BackgroundH7N9 continues to cause human infections and remains a pandemic concern. Understanding the economic impacts of this novel disease is important for making decisions on health resource allocation, including infectious disease prevention and control investment. However, there are limited data on such impacts.MethodsHospitalized laboratory-confirmed H7N9 patients or their families in Jiangsu Province of China were interviewed. Patients’ direct medical costs of hospitalization were derived from their hospital bills. A generalized linear model was employed to estimate the mean direct medical costs of patients with different characteristics.ResultsThe mean direct cost of hospitalization for H7N9 was estimated to be ¥ 71 060 (95 % CI, 48 180–104 820), i.e., US$ 10 996 (95 % CI, 7 455–16 220), and was ¥12 060 (US$ 1 861), ¥136 120 (US$ 21 001) and ¥218 610 (US$ 33 728) for those who had mild or severe symptoms or who died, respectively. The principal components of the total fees differed among patients with different disease severity, although medication fees were always the largest contributors. Disease severity, proportion of reimbursement and family member monthly average income were identified as the key factors that contributed to a patient’s direct medical cost of hospitalization.ConclusionsThe direct medical costs of hospitalized patients with H7N9 are significant, and far surpass the annual per capita income of Jiangsu Province, China. The influencing factors identified should be taken into account when developing related health insurance policies and making health resource allocation.Trial registrationNot applicable. This is a survey study with no health care intervention implemented on human participants.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0170-5) contains supplementary material, which is available to authorized users.
The aim of the present study was to investigate the cardioprotective effects of anisodamine against myocardial ischemia/reperfusion (I/R) injury and the molecular mechanisms involved. The present results demonstrated that anisodamine attenuated myocardial infarct sizes, decreased the levels of creatine kinase and lactate dehydrogenase, whereas it increased the left ventricular (LV) systolic pressure, the LV end‑diastolic pressure, and the LV pressure maximum rising and falling rates in a myocardial I/R rat model. In addition, anisodamine was revealed to suppress oxidative stress, inflammatory factor production and myocardial cell apoptosis, as demonstrated by the downregulation of caspase‑3 and apoptosis regulator BAX protein expression. The production of reactive oxygen species was decreased and the protein expression of inducible nitric oxide synthase (iNOS) was downregulated, whereas the expression of endothelial NOS was enhanced. In addition, the activity of nicotinamide‑adenine dinucleotide phosphate oxidase (Nox) was suppressed and the expression of Nox4 was downregulated in rats with myocardial I/R injury. In conclusion, the results of the present study suggested that anisodamine exerted a cardioprotective effect against myocardial I/R injury in rats, through the inhibition of oxidative stress, the suppression of inflammatory processes and the inhibition of myocardial cell apoptosis.
LC3B is a marker of autophagic activity, and growing evidence supports its importance in myocardial hypertrophy. Thus, regulating LC3B expression may provide an important avenue to inhibit autophagy and protect against or inhibit pathological myocardial hypertrophy. To address this question, we investigated the effects of altering LC3B mRNA expression and autophagic activity in the setting of cardiomyocyte hypertrophy. In an in vitro angiotensin II (Ang II)-induced cardiomyocyte hypertrophy model, LC3B mRNA and protein expression was increased and there was activation of cardiomyocyte autophagy, which was assessed by transmission electron microscopy and flow cytometry. LC3B cDNA transfection also resulted in an upregulation of autophagic activity, whereas downregulation of autophagic activity was observed with knockdown of LC3B expression. Induction of LC3B expression was shown to further exacerbate Ang II-stimulated cardiomyocyte hypertrophy, whereas inhibition of LC3B expression inhibited the Ang II-stimulated cardiomyocyte hypertrophy (as assessed through cardiomyocyte morphology and expression of ANP and β-MHC). This study demonstrated that LC3B modulates the Ang II-induced cardiomyocyte hypertrophy in cultured neonatal rat ventricular cardiomyocytes.
BackgroundThe purpose of this study was to examine the effect of mental clinical nursing pathways on suicidal ideation and life quality of patients with malignant tumors.MethodsTwo hundred patients with malignant tumors were randomly divided into a study group and a control group, with 100 patients in each group. During the treatment, patients in the study group received mental clinical nursing pathway care, while those in the control group were given the usual nursing care, such as timely inspection, nurse’s reactions to patient’s behavior, and execution of medical orders. Thereafter, the “self-rating idea of suicide scale” and Karnofsky Performance Status (KPS) were used to compare the differences in the suicidal ideation of patients with malignant tumors between the two groups before and after the treatment.ResultsThere were no statistical differences in the scores of despair factor, optimistic factor, sleep factor, and cover factor between the two groups before the treatment (P>0.05). After different styles of nursing, the former four factors of patients in the study group were significantly lower than those in the control group (P<0.01), while there were no significant differences in the score of cover factor between the two groups (P>0.05). The KPS of patients receiving mental clinical nursing pathway care was higher than those receiving usual nursing care, and there was a statistical significant difference between the two groups (P<0.01). Interestingly, the patients’ suicidal ideation scale was negatively correlated with KPS (r =−0.29, P<0.05).ConclusionFor individuals diagnosed with a malignant tumor, using a mental health clinical nursing pathway can effectively decrease the degree of suicidal ideation and positively impact the quality of life.
This study was aimed to establish a stable animal model of left ventricular hypertrophy (LVH) to provide theoretical and experimental basis for understanding the development of LVH. The abdominal aorta of male Wistar rats (80-100 g) was constricted to a diameter of 0.55 mm between the branches of the celiac and anterior mesenteric arteries. Echocardiography using a linear phased array probe was performed as well as pathological examination and plasma B-type natriuretic peptide (BNP) measurement at 3, 4 and 6 weeks after abdominal aortic constriction (AAC). The results showed that the acute mortality rate (within 24 h) of this modified rat model was 8%. Animals who underwent AAC demonstrated significantly increased interventricular septal (IVS), LV posterior wall (LVPWd), LV mass index (LVMI), cross-sectional area (CSA) of myocytes, and perivascular fibrosis; the ejection fraction (EF), fractional shortening (FS), and cardiac output (CO) were consistently lower at each time point after AAC. Notably, differences in these parameters between AAC group and sham group were significant by 3 weeks and reached peaks at 4th week. Following AAC, the plasma BNP was gradually elevated compared with the sham group at 3rd and 6th week. It was concluded that this modified AAC model can develop LVH, both stably and safely, by week four post-surgery; echocardiography is able to assess changes in chamber dimensions and systolic properties accurately in rats with LVH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.