Sepsis and septic shock are associated with life-threatening organ dysfunction caused by an impaired host response to infections. Although circadian clock disturbance impairs the early inflammatory response, its impact on post-septic immunosuppression remains poorly elucidated. Here, we show that Bmal1, a core circadian clock gene, plays a role in the regulation of host immune responses in experimental sepsis. Mechanistically, Bmal1 deficiency in macrophages increases PKM2 expression and lactate production, which is required for expression of the immune checkpoint protein PD-L1 in a STAT1-dependent manner. Consequently, targeted ablation of Pkm2 in myeloid cells or administration of anti-PD-L1-neutralizing antibody or supplementation with recombinant interleukin-7 (IL-7) facilitates microbial clearance, inhibits T cell apoptosis, reduces multiple organ dysfunction, and reduces septic death in Bmal1-deficient mice. Collectively, these findings suggest that the circadian clock controls the immune checkpoint pathway in macrophages and therefore represents a potential therapeutic target for lethal infection.
Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m3C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response.
Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell.
It has been proposed that mitochondrial dysfunction is involved in the pathogenesis of type 2 diabetes (T2D). To dissect the underlying mechanisms, we performed a multiplexed proteomics study on liver mitochondria isolated from a spontaneous diabetic rat model before/after they were rendered diabetic. Altogether, we identified 1091 mitochondrial proteins, 228 phosphoproteins, and 355 hydroxyproteins. Mitochondrial proteins were found to undergo expression changes in a highly correlated fashion during T2D development. For example, proteins involved in -oxidation, the tricarboxylic acid cycle, oxidative phosphorylation, and other bioenergetic processes were coordinately up-regulated, indicating that liver cells confronted T2D by increasing energy expenditure and activating pathways that rid themselves of the constitutively increased flux of glucose and lipid. Notably, activation of oxidative phosphorylation was immediately related to the overproduction of reactive oxygen species, which caused oxidative stress within the cells. Increased oxidative stress was also evidenced by our post-translational modification profiles such that mitochondrial proteins were more heavily hydroxylated during T2D development. Moreover, we observed a distinct depression of antiapoptosis and antioxidative stress proteins that might reflect a higher apoptotic index under the diabetic stage. We suggest that such changes in systematic metabolism were causally linked to the development of T2D. Comparing proteomics data against microarray data, we demonstrated that many T2D-related alterations were unidentifiable by either proteomics or genomics approaches alone, underscoring the importance of integrating different approaches. Our compendium could help to unveil pathogenic events in mitochondria leading to T2D and be useful for the discovery of diagnosis biomarker and therapeutic targets of T2D. Molecular & Cellular Proteomics 9:100 -116, 2010. Type 2 diabetes (T2D)1 has become a global health epidemic. It is recognized as a strong risk factor for cardiovascular diseases and for associated complications that result in substantial morbidity and mortality (1). Now it is recognized that T2D is a heterogeneous disease in which almost every aspect of the body's metabolism goes awry. The onset of T2D results from complex interactions between genetic and environmental factors. Several cellular dysfunctions and molecular defects are proposed to be associated with T2D, such as -cell malfunction, impaired insulin secretion and function, chronic hyperglycemia, and other disturbances in systematic metabolism (1).Besides these findings, recently the topic of mitochondrial dysfunction has also gained a lot of attention in the T2D field (2-4). Numerous studies have revealed that various mitochondrial factors are of paramount importance in the pathogenesis of diabetes. For example, high fat diet-induced alterations in the mitochondrial compartment are associated with the development of insulin resistance and ectopic fat storage in liver (5). The dysfuncti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.