Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.
The purpose of the study is to estimate cancer risks from the amount of radiation used to perform body computed tomography (CT) examination. The ImPACT CT Patient Dosimetry Calculator was used to compute values of organ doses for adult body CT examinations. The radiation used to perform each examination was quantified by the dose-length product (DLP). Patient organ doses were converted into corresponding age and sex dependent cancer risks using data from BEIR VII. Results are presented for cancer risks per unit DLP and unit effective dose for 11 sensitive organs, as well as estimates of the contribution from 'other organs'. For patients who differ from a standard sized adult, correction factors based on the patient weight and antero-posterior dimension are provided to adjust organ doses and the corresponding risks. At constant incident radiation intensity, for CT examinations that include the chest, risks for females are markedly higher than those for males, whereas for examinations that include the pelvis, risks in males were slightly higher than those in females. In abdominal CT scans, risks for males and female patients are very similar. For abdominal CT scans, increasing the patient age from 20 to 80 resulted in a reduction in patient risks of nearly a factor of 5. The average cancer risk for chest/abdomen/pelvis CT examinations was ∼26 % higher than the cancer risk caused by 'sensitive organs'. Doses and radiation risks in 80 kg adults were ∼10 % lower than those in 70 kg patients. Cancer risks in body CT can be estimated from the examination DLP by accounting for sex, age, as well as patient physical characteristics.
Evolution of brain stem injury (BSI) after intensity modulated radiation therapy and related dose constraints have not been well defined in a large cohort of nasopharyngeal carcinoma. Through longitudinal follow-up Purpose: To evaluate the evolution of radiation-induced brain stem injury (BSI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity modulated radiation therapy (IMRT) and to identify the critical dosimetric predictors of BSI. Methods and Materials: A total of 6288 NPC patients treated with IMRT between 2009 and 2015 were retrospectively reviewed. Among these 6288 patients, 24 had radiation-induced BSI, which manifested as edematous lesions and contrastenhanced lesions (CLs) on magnetic resonance imaging. Latency, symptoms, and evolution of BSI were assessed. Critical dosimetric predictors of BSI were identified using a penalized regression model with performance evaluated by receiver operating characteristic curve analysis.
The aim of the study was to investigate how patient effective doses vary as a function of X-ray tube projection angle, as well as the patient long axis, and quantify how X-ray tube current modulation affects patient doses in chest CT examinations. Chest examinations were simulated for a gantry CT scanner geometry with projections acquired for a beam width of 4 cm. PCXMC 2.0.1 was used to calculate patient effective doses at 15° intervals around the patient's isocentre, and at nine locations along the patient long axis. Idealised tube current modulation schemes were modelled as a function of the X-ray tube angle and the patient long axis. Tube current modulations were characterised by the modulation amplitude R, which was allowed to vary between 1.5 and 5. Effective dose maxima occur for anteroposterior projections at the location of the (radiosensitive) breasts. The maximum to minimum ratio of effective doses as a function of the patient long axis was 4.9, and as a function of the X-ray tube angle was 2.1. Doubling the value of R reduces effective doses from longitudinal modulation alone by ∼4% and from angular modulation alone by ∼2%. In chest CT, tube current modulation schemes currently have longitudinal R values of ∼2.2, and angular R values that range between 1.5 and 3.4. Current X-ray tube current modulation schemes are expected to reduce patient effective doses in chest CT examinations by ∼10%, with longitudinal modulation accounting for two-thirds and angular modulation for the remaining one-third.
There are major differences in organ and effective dose as the x-ray tube rotates around the patient. The results suggest that the use of x-ray tube current modulation could produce substantial reductions in organ and effective dose for body imaging with cone beam CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.