Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-γ, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.
TBK1 is critical for immunity against microbial pathogens that activate TLR4- and TLR3-dependent signaling pathways. To address the role of TBK1 in inflammation, mice were generated that harbor two copies of a mutant Tbk1 allele. This Tbk1(Δ) allele encodes a truncated Tbk1(Δ) protein that is catalytically inactive and expressed at very low levels. Upon LPS stimulation, macrophages from Tbk1(Δ/Δ) mice produce normal levels of proinflammatory cytokines (e.g., TNF-α), but IFN-β and RANTES expression and IRF3 DNA-binding activity are ablated. Three-month-old Tbk1(Δ/Δ) mice exhibit mononuclear and granulomatous cell infiltrates in multiple organs and inflammatory cell infiltrates in their skin, and they harbor a 2-fold greater amount of circulating monocytes than their Tbk1(+/+) and Tbk1(+/Δ) littermates. Skin from 2-week-old Tbk1(Δ/Δ) mice is characterized by reactive changes, including hyperkeratosis, hyperplasia, necrosis, inflammatory cell infiltrates, and edema. In response to LPS challenge, 3-month-old Tbk1(Δ/Δ) mice die more quickly and in greater numbers than their Tbk1(+/+) and Tbk1(+/Δ) counterparts. This lethality is accompanied by an overproduction of several proinflammatory cytokines in the serum of Tbk1(Δ/Δ) mice, including TNF-α, GM-CSF, IL-6, and KC. This overproduction of serum cytokines in Tbk1(Δ/Δ) mice following LPS challenge and their increased susceptibility to LPS-induced lethality may result from the reactions of their larger circulating monocyte compartment and their greater numbers of extravasated immune cells.
Belowground bud bank density decreases towards the dry, hot end of the climatic gradient. Based on the distribution of bud types along the climatic gradient, bulb buds and tiller buds of tussock grasses seem to be more resistant to environmental stress than rhizome buds. The dominance of annual species and smaller bud banks in arid region implies that plant reproductive strategies and vegetation composition will be shifted in scenarios of increased drought under future climate change.
The expression of acidic mammalian chitinase (AMCase) is associated with Th2-driven respiratory disorders. To investigate the potentially pathological role of AMCase in allergic airway disease (AAD), we sensitized and challenged mice with ovalbumin or a combination of house dust mite (HDM) plus cockroach allergen. These mice were treated or not treated with small molecule inhibitors of AMCase, which significantly reduced allergen-induced chitinolytic activity in the airways, but exerted no apparent effect on pulmonary inflammation per se. Transgenic and AMCase-deficient mice were also submitted to protocols of allergen sensitization and challenge, yet we found little or no difference in the pattern of AAD between mutant mice and wild-type (WT) control mice. In a separate model, where mice were challenged only with intratracheal instillations of HDM without adjuvant, total bronchoalveolar lavage (BAL) cellularity, inflammatory infiltrates in lung tissues, and lung mechanics remained comparable between AMCase-deficient mice and WT control mice. However BAL neutrophil and lymphocyte counts were significantly increased in AMCase-deficient mice, whereas concentrations in BAL of IL-13 were significantly decreased compared with WT control mice. These results indicate that, although exposure to allergen stimulates the expression of AMCase and increased chitinolytic activity in murine airways, the overexpression or inhibition of AMCase exerts only a subtle impact on AAD. Conversely, the increased numbers of neutrophils and lymphocytes in BAL and the decreased concentrations of IL-13 in AMCase-deficient mice challenged intratracheally with HDM indicate that AMCase contributes to the Th1/Th2 balance in the lungs. This finding may be of particular relevance to patients with asthma and increased airway neutrophilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.