The brightest gamma-ray burst, GRB 221009A, has spurred numerous theoretical investigations, with particular attention paid to the origins of ultrahigh-energy TeV photons during the prompt phase. However, analyzing the mechanism of radiation of photons in the ∼MeV range has been difficult because the high flux causes pileup and saturation effects in most GRB detectors. In this Letter, we present systematic modeling of the time-resolved spectra of the GRB using unsaturated data obtained from the Fermi Gamma-ray Burst Monitor (precursor) and SATech-01/GECAM-C (main emission and flare). Our approach incorporates the synchrotron radiation model, which assumes an expanding emission region with relativistic speed and a global magnetic field that decays with radius, and successfully fits such a model to the observational data. Our results indicate that the spectra of the burst are fully in accordance with a synchrotron origin from relativistic electrons accelerated at a large emission radius. The lack of thermal emission in the prompt emission spectra supports a Poynting flux–dominated jet composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.