Predicting driver rear-end risk-avoidance maneuvers in cut-in scenarios, especially dangerous precrash scenarios, benefits the customization of automatic driving, particularly automatic steering. This paper studies driver rear-end risk-avoidance behaviors in cut-in scenarios on a straight three-lane highway. Data from 24 participants in 1326 valid trials were collected using a motion-based driving simulator. An Eysenck Personality Questionnaire (revised for Chinese participants) was used to obtain the personality traits of the participants. Based on a statistical analysis, the candidate features used in the driver maneuver prediction were determined as a combination of objective risk indicators and driver characteristics. A decision tree-based model was constructed for maneuver prediction in cut-in scenarios. The prediction accuracy of the extracted classification rules was 79.2% for the training data set and 80.3% for the test data set. The most powerful predictive variables were extracted, and their effects on maneuver decisions were analyzed. The results show that driver characteristics strongly influence the prediction of maneuver decisions.
Bicycling is one of the popular modes of transportation, but bicyclists are easily involved in injuries or fatalities in vehicle-bicycle (V-B) accidents. The AEB (Autonomous Emergency Braking) systems have been developed to avoid collisions, but their adaptiveness needs to be further improved under different motion patterns of V-B conflicts. This paper analyzes drivers’ braking behaviors in different motion patterns of V-B conflicts to improve the performance of Bicyclist-AEB systems. For safety and data reliability, a driving simulator was used to reconstruct two typical conflict types, i.e., SCR (a bicycle crossing the road from right in front of a straight going car) and SSR (a bicycle cut-in from right in front of a straight going car). Either conflict contained various parameterized motion patterns, which were characterized by a combination of parameters: Vc (car velocity), TTC (time-to-collision), Vb (bicycle velocity), and Dlat (lateral distance between the car and the bicycle) or Vlat (maximum lateral velocity of the bicycle). Some 26 licensed drivers participated in an orthogonal experiment for braking behavior analysis. Results revealed that drivers brake immediately when V-B conflicts occur; hence the BRT (brake reaction time) is independent of any motion pattern parameters. This was further verified by another orthogonal experiment with 10 participants using the eye tracking device. BRT in SSR is longer than that in SCR due to the less perceptible risk and drivers’ lower expectation of a collision. The braking intensity and brake Pedal Speed are higher in short-TTC patterns in both conflict types. Therefore, TTC is not a proper activation threshold but a reasonable indicator of braking intensity and Pedal Speed for driver-adaptive AEB systems. By applying the findings in the Bicyclist-AEB, the adaptiveness and acceptability of Bicyclist-AEB systems can be improved.
The pandemic of coronavirus Disease 2019 (COVID-19) caused enormous loss of life globally. 1-3 Case identification is critical. The reference method is using real-time reverse transcription PCR (rRT-PCR) assays, with limitations that may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that application of deep learning (DL) to the 3D CT images could help identify COVID-19 infections. Using the data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 patients. COVIDNet achieved an accuracy rate of 94.3% and an area under the curve (AUC) of 0.98. Application of DL to CT images may improve both the efficiency and capacity of case detection and long-term surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.