Renal ischemia-reperfusion (I/R) injury is the most common cause of AKI, which associates with high mortality and has no effective therapy. ELABELA (ELA) is a newly identified 32-residue hormone peptide highly expressed in adult kidney. To investigate whether ELA has protective effects on renal I/R injury, we administered the mature peptide (ELA32) or the 11-residue furin-cleaved fragment (ELA11) to hypoxia-reperfusion (H/R)-injured or adriamycin-treated renal tubular cells ELA32 and ELA11 significantly inhibited the elevation of the DNA damage response, apoptosis, and inflammation in H/R-injured renal tubular cells and suppressed adriamycin-induced DNA damage response. Similarly, overexpression of ELA32 or ELA11 significantly inhibited H/R-induced cell death, DNA damage response, and inflammation. Notably, treatment of mice with ELA32 or ELA11 but not an ELA11 mutant with a cysteine to alanine substitution at the N terminus (AE11C) inhibited I/R injury-induced renal fibrosis, inflammation, apoptosis, and the DNA damage response and markedly reduced the renal tubular lesions and renal dysfunction. Together, our results suggest that ELA32 and ELA11 may be therapeutic candidates for treating AKI.
Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound, which is enriched with many herbs and plants, such as apple, cranberry and olive. UA performs multiple biological activities including anti-oxidation, anti-inflammation, anti-cancer and hepatoprotection. However, the exact mechanism underlying the hepatoprotective activity of UA remains unclear. In this study, the effects of UA on the development of nonalcoholic fatty liver disease (NAFLD) were investigated. In vivo, UA treatment (0.14%, w/w) significantly decreased the liver weight, serum levels of ALT/AST and hepatic steatosis in db/db mice (a type 2 diabetic mouse model). In vitro, UA treatment (10-30 μg ml(-1)) significantly decreased palmitic acid induced intracellular lipid accumulation in L02 cells. Our results suggested that the beneficial effects of UA on NAFLD may be due to its ability to increase lipid β-oxidation and to inhibit the hepatic endoplasmic reticulum (ER) stress. Together, UA may be further considered as a natural compound for NAFLD treatment.
We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear ion trap-orbitrap hybrid tandem mass spectrometry (MS/MS) to quantify 131 single histone marks and 143 combinations of multiple histone marks in noninjured and injured retinas. We observed 34 histone PTMs that exhibited significantly (p < 0.05) different abundance between healthy and I/R injured eyes, of which we confirmed three H4 histone marks by Western blotting. H4K20me2 was up to 4-fold change up-regulated after the injury and is associated with the response to DNA damage as demonstrated by an increase in the phosphorylation of p53 and Chk1. This study demonstrates that quantitative MS provides a sensitive and accurate way to dissect the changes in the histone code after retinal injury. Specifically, DNA damage associated histone PTMs may contribute to neurovascular degeneration during the process of ischemia/reperfusion injury.
White adipocytes play important roles in many physiological processes, including energy storage, endocrine signaling, and inflammatory responses. Understanding the molecular mechanisms of adipocyte formation (adipogenesis) provides insights into therapeutic approaches against obesity and its related diseases. Many transcriptional factors and epigenetic enzymes are known to regulate adipogenesis; however, whether histone variants play a role in this process is unknown. Here we found that macroH2A1.1 (mH2A1.1), a variant of histone H2A, was upregulated during adipocyte differentiation in 3T3-L1 cells and in the white adipose tissue of obese mice. Ablation of mH2A1.1 activated Wnt/β-catenin signaling pathway, while overexpression of mH2A1.1 showed opposite effects. We further found that mH2A1.1 regulated Wnt/β-catenin signaling pathway by cooperating with EZH2, a histone H3K27 methyltransferase, thus led to accumulation of H3K27me2 and H3K27me3 on the promoters of Wnt genes. Mutations in the macro-domain, mH2A1.1G224E, and mH2A1.1G314E, not only impaired adipogenesis, but also impaired the binding ability of mH2A1.1 to EZH2 and the enrichments of H3K27me2 and H3K27me3 on the promoters of Wnt genes. Together, our study reveals a novel regulatory role of mH2A1.1 in adipogenesis and obesity, which provides new insights in white fat development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.