The appearance of detritus shed from mountain ranges along the northern margin of the Tibetan Plateau heralds the Cenozoic development of high topography. Current estimates of the age of the basal conglomerate in the Qaidam basin place this event in Paleocene-Eocene. Here we present new magnetostratigraphy and mammalian biostratigraphy that refine the onset of basin fill to ∼25.5 Myr and reveal that sediment accumulated continuously until ∼4.8 Myr. Sediment provenance implies a sustained source in the East Kunlun Shan throughout this time period. However, the appearance of detritus from the Qilian Shan at ∼12 Myr suggests emergence of topography north of the Qaidam occurred during the late Miocene. Our results imply that deformation and mountain building significantly post-date Indo-Asian collision and challenge the suggestion that the extent of the plateau has remained constant through time. Rather, our results require expansion of high topography during the past 25 Myr.
New apatite (U-Th)/He from the northeastern margin of the Tibetan Plateau (north Qilian Shan) indicate rapid cooling began at ~10 Ma, which is attributed to the onset of faulting and topographic growth. Preservation of the paleo-PRZ in the hanging wall and growth strata in the footwall allow us to calculate vertical and horizontal fault slip rates averaged over the last 10 Myr of ~0.5 mm/yr and ~1 mm/yr respectively, which are within a factor of two consistent with Holocene slip rates and geodetic data. Low fault slip rates since the initiation of the northern Qilian Shan fault suggest that total horizontal offset did not exceed 10 km. Further, emergence of the northern Qilian Shan occurs during a period of increased aridity in northern Tibet but is associated with only a minor expansion of the northern plateau perimeter, which is well established near collision time. Outgrowth of the northern Qilian Shan at ~10 Ma could be simple propagation of the larger Qilian Shan system, occurring in response to decreased slip rates on the Altyn Tagh fault or as a result of the change in GPE of the central plateau.
In the epicenter of the Lushan M S 7.0 earthquake there are several imbricate active reverse faults lying from northwest to southeast, namely the Gengda-Longdong, Yanjing-Wulong, Shuangshi-Dachuan and Dayi faults. Emergency field investigations have indicated that no apparent earthquake surface rupture zones were located along these active faults or their adjacent areas. Only brittle compressive ruptures in the cement-covered pavements can be seen in Shuangshi, Taiping, Longxing and Longmen Townships, and these ruptures show that a local crustal shortening occurred in the region during the earthquake. Combining spatial distribution of the relocated aftershocks and focal mechanism solutions, it is inferred that the Lushan earthquake is classified as a typical blind reverse-fault earthquake, and it is advised that the relevant departments should pay great attention to other historically un-ruptured segments along the Longmenshan thrust belt and throughout its adjacent areas.Lushan earthquake, earthquake surface rupture zone, blind reverse-fault earthquake, Longmenshan thrust belt, Qinghai-Tibetan Plateau
Citation:Xu X W, Wen X Z, Han Z J, et al. Lushan M S 7.0 earthquake: A blind reserve-fault event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.