An elastic wave is composed of compressional (longitudinal) waves and shear (transverse) waves which have different wave velocities in solids. The acoustic field presents complex interference patterns which means its phenomena and properties are difficult to reveal. Fortunately, the energy method is more accurate than the potential function approach in describing the physical properties of the acoustic field. However, the polarization state of particle vibration excited by an elastic wave is spatially periodic in the wave propagation direction. Therefore, the energy propagation direction is not consistent with the wave propagation direction using commonly used energy method. According to the polarization state of particle vibration, a time-space averaging method based on the spatial periodicity of energy flux in the solid is proposed. The method could eliminate the influence of the interference due to local energy exchange and retain the trend of energy propagation. Several conclusions are illustrated through the analysis of the scattering energy properties of a steel shell in sandy sediment. Sandy sediment can not be regarded as a fluid nor a general solid. Scattering energy excited by an incident shear wave mainly concentrates in the vicinity of the directions of backscattering and forward scattering. Especially, at low frequency, it plays an important role in the total scattering energy excited by an incident compressional and shear wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.