Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).
Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing.
The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy–endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43–mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.
In order to obtain the capability of neutral point potential balancing with low switching frequency, a novel balance control algorithm for neutralpoint-clamped (NPC) three-level inverter based on Selective harmonic elimination pulse-width modulation (SHEPWM) are proposed. On the basis of the switch sequences and voltage vector action angle corresponding to the three-phase SHEPWM waveform at different modulation index, the three kinds of redundant vector adjustment schemes are designed. Then, load current and neutral point potential feedback to the controller, and the three-phase pulse-width modulation signal adjusted directly by the hysteresis controller to realise neutral point potential balance. Experimental results show that different redundant vector adjustment schemes have different neutral point potential balancing speed and average switching frequency, but do not affect the harmonic elimination ability of the line voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.