It remains a big challenge to develop non-precious metal catalysts for oxygen evolution reaction (OER) in energy storage and conversion systems. Herein, a facile and cost-effective strategy is employed to in situ prepare the Ni/Fe oxyhydroxide anchored on nitrogen-doped carbon aerogel (NiFeOx(OH)y@NCA) for OER electrocatalysis. The as-prepared electrocatalyst displays a typical aerogel porous structure composed of interconnected nanoparticles with a large BET specific surface area of 231.16 m2·g−1. In addition, the resulting NiFeOx(OH)y@NCA exhibits excellent OER performance with a low overpotential of 304 mV at 10 mA·cm−2, a small Tafel slope of 72 mV·dec−1, and excellent stability after 2000 CV cycles, which is superior to the commercial RuO2 catalyst. The much enhanced OER performance is mainly derived from the abundant active sites, the high electrical conductivity of the Ni/Fe oxyhydroxide, and the efficient electronic transfer of the NCA structure. Density functional theory (DFT) calculations reveal that the introduction of the NCA regulates the surface electronic structure of Ni/Fe oxyhydroxide and increases the binding energy of intermediates as indicated by the d-band center theory. This work provides a new method for the construction of advanced aerogel-based materials for energy conversion and storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.