In this paper we discuss our research in developing general and systematic methods for intrusion detection. The key ideas are to use data mining techniques to discover consistent and useful patterns of system features that describe program and user behavior, and use the set of relevant system features to compute (inductively learned) classifiers that can recognize anomalies and known intrusions. Using experiments on the sendmail system call data and the network tcpdump data, we demonstrate that we can construct concise and accurate classifiers to detect anomalies. We provide an overview on two general data mining algorithms that we have implemented: the association rules algorithm and the frequent episodes algorithm. These algorithms can be used to compute the intra-and inter-audit record patterns, which are essential in describing program or user behavior. The discovered patterns can guide the audit data gathering process and facilitate feature selection. To meet the challenges of both efficient learning (mining) and real-time detection, we propose an agent-based architecture for intrusion detection systems where the learning agents continuously compute and provide the updated (detection) models to the detection agents.
Intrusion detection (ID) is an important component of infrastructure protection mechanisms. Intrusion detection systems (IDSs) need to be accurate, adaptive, and extensible. Given these requirements and the complexities of today's network environments, we need a more systematic and automated IDS development process rather than the pure knowledge encoding and engineering approaches. This article describes a novel framework, MADAM ID, for Mining Audit Data for Automated Models for Intrusion Detection. This framework uses data mining algorithms to compute activity patterns from system audit data and extracts predictive features from the patterns. It then applies machine learning algorithms to the audit records that are processed according to the feature definitions to generate intrusion detection rules.Results from the 1998 DARPA Intrusion Detection Evaluation showed that our ID model was one of the best performing of all the participating systems. We also briefly discuss our experience in converting the detection models produced by off-line data mining programs to real-time modules of existing IDSs.
In this paper we describe the results achieved using the JAM distributed data mining system for the real world problem of fraud detection in financial information systems. For this domain we provide clear evidence that state-of-the-art commercial fraud detection systems can be substantially improved in stopping losses due to fraud by combining multiple models of fraudulent transaction shared among banks. We demonstrate that the traditional statistical metrics used to train and evaluate the performance of learning systems, (i.e. statistical accuracy or ROC analysis) are misleading and perhaps inappropriate for this application. Cost-based metrics are more relevant in certain domains, and defining such metrics poses significant and interesting research questions both in evaluating systems and alternative models, and in formalizing the problems to which one may wish to apply data mining technologies. This paper also demonstrates how the techniques developed for fraud detection can be generalized and applied to the important area of Intrusion Detection in networked information systems. We report the outcome of recent evaluations of our system applied to tcpdump network intrusion data specifically with respect to statistical accuracy. This work involved building additional components of JAM that we have come to call, MADAM ID (Mining Audit Data for Automated Models for Intrusion Detection). However, taking the next step to define cost-based models for intrusion detection poses interesting new research questions. We describe our initial ideas about how to evaluate intrusion detection systems using cost models learned during our work on fraud detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.