The amount of medical text data is increasing dramatically. Medical text data record the progress of medicine and imply a large amount of medical knowledge. As a natural language, they are characterized by semistructured, high-dimensional, high data volume semantics and cannot participate in arithmetic operations. Therefore, how to extract useful knowledge or information from the total available data is very important task. Using various techniques of data mining can extract valuable knowledge or information from data. In the current study, we reviewed different approaches to apply for medical text data mining. The advantages and shortcomings for each technique compared to different processes of medical text data were analyzed. We also explored the applications of algorithms for providing insights to the users and enabling them to use the resources for the specific challenges in medical text data. Further, the main challenges in medical text data mining were discussed. Findings of this paper are benefit for helping the researchers to choose the reasonable techniques for mining medical text data and presenting the main challenges to them in medical text data mining.
Objective To explore the technical research and application characteristics of deep learning in tongue-facial diagnosis. Methods Through summarizing the merits and demerits of current image processing techniques used in the traditional medical tongue and face diagnosis, the research status of deep learning in tongue image preprocessing, segmentation, and classification was analyzed and reviewed, and the algorithm was compared and verified with the real tongue and face image. Images of the face and tongue used for diagnosis in conventional medicine were systematically reviewed, from acquisition and pre-processing to segmentation, classification, algorithm comparison, result from analysis, and application. Results Deep learning improved the speed and accuracy of tongue and face diagnostic image data processing. Among them, the average intersection ratio of U-net and Seg-net models exceeded 0.98, and the segmentation speed ranged from 54 to 58 ms. Conclusion There is no unified standard for lingual-facial diagnosis objectification in terms of image acquisition conditions and image processing methods, thus further research is indispensable. It is feasible to use the images acquired by mobile in the field of medical image analysis by reducing the influence of environmental and other factors on the quality of lingual-facial diagnosis images and improving the efficiency of image processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.