The Ascomycetes fungus Colletotrichum fructicola causes severe diseases on a wide range of crops, fruits, and vegetables. Its pathogenic mechanisms, however, remain poorly understood. Mitogen-activated protein kinases (MAPKs) are conserved regulators of fungal development and pathogenesis. In this study, a Fus3/Kss1-related MAPK from C. fructicola was functionally characterized via gene deletion. On potato dextrose agar (PDA) and oatmeal agar media, the CfPMK1 gene deletion mutants (Δ CfPMK1 ) were slightly reduced in radial growth rate, severely limited in aerial hyphal differentiation and hyphal melanization, and formed deformed perithecia that were smaller in size and more compactly organized relative to wild type. When artificially inoculated on plants, conidia of these mutants failed to differentiate appressoria or penetrate cuticle, and their pathogenicity defect could not be rescued by wounding plant tissue prior to inoculation. On PDA, Δ CfPMK1 mutants were hypersensitive to osmotic stresses, but were more tolerant to membrane and cell wall stresses. Genetic complementation rescued all phenotypic changes associated with CfPMK1 gene deletion. Based on GFP fusion expression, CfPMK1 protein accumulation was detected at all life stages, and the accumulation level was higher in nascent appressoria relative to conidia. Overall, this study identified CfPMK1 as a key regulator of appressorium and sexual development, pathogenesis, and stress tolerance in C. fructicola .
BackgroundThe fungal species complex Colletotrichum gloeosporioides sensu lato contains over 20 plant-interacting species. These species exhibit different life styles (e.g., endophytes, foliar and fruit pathogens) and show considerable variation in host and tissue adaptation strategies. Accurate species delimitation in C. gloeosporioides s.l. is very challenging due to nascent lineage boundaries and phenotypic plasticity, which strongly impedes studies of the complex’s host-interaction biology. In this study, we first sequenced and compared nine mitogenomes belonging to four C. gloeosporioides s.l. species lineages (C. gloeosporioides, C. fructicola, C. aenigma, and C. siamense s.l.), and evaluated the usefulness of mitogenome sequence in complementing prevailing nuclear markers for species delimitation.ResultsThe C. gloeosporioides s.l. mitogenomes ranged between 52,671 and 58,666 bp in size, and each contained an identical set of genes transcribed in the same direction. Compared with previously reported Colletotrichum mitogenomes, these mitogenomes were uniquely featured by: (1) significantly larger genome size due to richer intron content and longer intergenic region; (2) striking GC content elevation at the intergenic region; and (3) considerable intron content variation among different species lineages. Compared with nuclear DNA markers commonly used in phylogeny, the mitogenome nucleotide diversity was extremely low, yet the mitogenome alignment contained the highest number of parsimony informative sites, which allowed the generation of a high-resolution phylogeny recognizing all taxonomic lineages, including ones belonging to the very nascent C. siamense s.l. complex. The tree topology was highly congruent with the phylogeny based on nuclear marker concatenation except for lineages within C. siamense s.l. Further comparative phylogenetic analysis indicated that lineage-specific rapid divergence of GS and SOD2 markers confounded concatenation-based species relationship inference.ConclusionsThis study sheds light on the evolution of C. gloeosporioides s.l. mitogenomes and demonstrates that mitogenome sequence can complement prevailing nuclear markers in improving species delimitation accuracy. The mitogenome sequences reported will be valuable resources for further genetic studies with C. gloeosporioides s.l. and other Colletotrichum species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3480-x) contains supplementary material, which is available to authorized users.
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor CfSte12 gene in C. fructicola was up-regulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (ΔCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of non-wounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by ΔCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g. the tetraspanin PLS1, Gas1-like proteins, cutinases, melanin biosynthesis genes) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola. Besides, CfSte12 is also needed by sexual development of perithecia and ascospores. Importance Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation and necrotic spot on fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provided evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results revealed a key pathogenicity-related transcription factor CfSte12 in C. fructicola that causing GLS.
Glomerella leaf spot (GLS) caused by Colletotrichum fructicola is a severe disease worldwide on apple, causing defoliation, leaf and fruit spot, and substantial yield loss. However, little is known about its molecular mechanisms of pathogenesis. Previous transcriptome analysis revealed that a transcription factor, CfMcm1, was induced during leaf infection. In the present work, expression pattern analysis verified that CfMcm1 gene was strongly expressed in conidia and early infection. Phenotypic analysis revealed that the gene deletion mutant ΔCfMcm1 lost pathogenicity to apple leaves by inhibiting conidial germination and appressorium formation. Besides appressorium-mediated pathogenicity, ΔCfMcm1 colonization and hyphal extension in wounded apple fruit was also reduced, and conidial germination mode and conidial color were altered. ΔCfMcm1 displayed impairment of cell wall integrity and response to stress caused by oxidation, osmosis and an acid environment. Furthermore, the deletion mutant produced fewer and smaller perithecia and no ascospores. In contrast, melanin deposition in mycelia of ΔCfMcm1 was strengthened. Further comparative transcriptome and quantitative PCR analysis revealed that CfMcm1 modulated expression of genes related to conidial development (CfERG5A, CfERG5B, CfHik5, CfAbaA), appressorium formation (CfCBP1, CfCHS7), pectin degradation (CfPelA, CfPelB), sexual development (CfMYB, CfFork, CfHMG, CfMAT1-2-1) and melanin biosynthesis (CfCmr1, CfPKS1, CfT4HR1, CfTHR1, CfSCD1). Our results demonstrated that CfMcm1 is a pivotal regulator possessing multiple functions in pathogenicity, asexual and sexual reproduction, and melanin biosynthesis.
In ascomycetes, 1,8-dihydroxynaphthalene (DHN) melanin plays important protective functions and its production is usually coupled with development and environmental stress responses. The regulation of melanin biosynthesis, however, remains obscure. Colletotrichum fructicola is a phytopathogen with a broad host range that produces melanized appressoria and perithecia. In this study, we annotated melanin genes in a high-quality C. fructicola genome and characterized two zinc finger transcription factors (TFs) ( cmr1 and cmr2) that form a loosely organized gene cluster with several melanin biosynthesis genes. Deleting either TF abolished melanization in both mycelia and perithecia but did not affect appressoria. The deletion mutants also showed perithecial development defects. Overexpressing cmr1 in Δ cmr2 strongly activated the expression of melanin biosynthesis genes including pks1, scd1, t4hr1, and thr1 and caused hyper-accumulation of charcoal to black pigment(s). On the other hand, overexpressing cmr2 in Δ cmr1 activated pks1, t4hr1, and thr1, but not scd1. We conclude that proper DHN melanin accumulation in C. fructicola requires the cooperative function of two in-cluster TFs that also regulate perithecial development. The study clarifies DHN melanin regulations in C. fructicola and expands the function of melanin in-cluster TFs to sex regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.