The end-Devonian was a critical interval in Earth history recording the transition from the Early Paleozoic greenhouse climate to the Late Paleozoic icehouse climate. A mass extinction at this time (the Hangenberg extinction) eliminated ~21% of genera and ~16% of families of marine invertebrates, although its causes remain poorly understood. The marine nitrogen cycle is intimately related to the nutrient status of seawater, microbial community composition, and the redox condition of the oceans, and, thus, it may provide insights into the mechanism(s) of the end-Devonian mass extinction and climate change. Here, we analyzed high-stratigraphicresolution bulk-sediment nitrogen isotope variation ( 15 N bulk) in three sections from South China: (1) Long'an, an isolated carbonate platform section, (2) Qilinzhai, a shallow-water carbonate platform section between the Yangtze Oldland and the Youjiang Trough, and (3) Malanbian, a shallow-water carbonate platform section between the Yangtze and Cathaysia oldlands and distant from deep-water areas. Our 15 N bulk records show a major perturbation to the marine nitrogen cycle in the Middle Si. praesulcata Zone, which is marked by a decline in 15 N bullk from +4‰ to 0‰
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.