Electromagnetic wave absorbing materials play an increasingly important role in consumer electronics and military defense. The remarkable merits of atomically thin graphene structures and their exotic optoelectronic properties provide new opportunities to design high‐performance electromagnetic wave absorbers. This progress report summarizes the recent advances in graphene‐based microwave and terahertz stealth materials. In the first section, the theory of electromagnetic wave absorption and the evaluation methods for absorption performance are briefly introduced. Then, representative graphene‐based microwave and terahertz absorber systems are presented with an emphasis on the selection of the absorbent component and structural design. In the last section, the perspectives and future research directions of this promising field are discussed.
With the booming microwave and terahertz technology for communication, detection, and healthcare, the consequently increasingly complicated electromagnetic environment is in urgent need of high-performance microwave and terahertz absorption materials. However, it is still a huge challenge to achieve consecutively strong absorption in both microwave and terahertz regimes. Herein, an ultra-broadband and highly efficient absorber for both microwave and terahertz bands based on the monolithic three-dimensional cross-linked Fe3O4/graphene material (3DFG) is first reported. The 3DFG shows an incredible wide qualified absorption bandwidth (with reflection loss less than −10 dB) from 3.4 GHz to 2.5 THz, which is the best result in this area by far. Furthermore, the remarkable absorption performance can be maintained under oblique incidence, different compressive strains, and even after 200 compression/release cycles. The designed highly porous structure for minimizing surface reflection combined with the micro–macro integrated high lossy framework results in the excellent absorptivity, as verified by the terahertz time-domain spectroscopy technique. With these, the 3DFG achieves an unprecedentedly average absorption intensity of 38.0 dB, which is the maximum value among the broadband absorbers. In addition, its specific average microwave and terahertz absorption value is over 2 orders of magnitude higher than other kinds of reported materials. The results provide new insights for developing novel ultra-broadband absorbers with stronger reflection loss and wider absorption bandwidth.
terahertz imaging, [9][10][11] terahertz detection, [12][13][14] and so on, terahertz related circuits and electronic components have been widely applied to current technologies. The fast-growing applications for terahertz waves have led to an urgent demand for terahertz shielding materials in order to effectively reduce the interference of terahertz wave signals, improve their transmission environment, and ensure that the delicate electronic instruments work as normal. Moreover, terahertz stealth materials also play a very important role in the fields of national security and information protection, which may help to avoid significant losses to individuals, enterprises, and even countries. Therefore, high-performance terahertz shielding/stealth materials have the potential for wide applications. [15] Traditional terahertz shielding materials are mainly composed of reflective materials because they reflect the incident terahertz wave by simply increasing conductivity. [16,17] For example, it is reported that a terahertz-shielding membrane prepared by a pyrolysis process for commercial polyimide has a very high reflectivity of more than 90%. [18] However, reflective shielding materials have two fatal flaws. First, reflective shielding materials cannot completely eliminate the interference of terahertz waves, because the reflected terahertz wave still adversely affects other sophisticated electronic elements inside the shielded devices. [19] Second, reflective shielding materials usually have a large density. The reflective Strong terahertz-response material which exhibits both excellent terahertz shielding and stealth performance is promising in practical applications of terahertz technology. Here, ultralight graphene foam (GF) and multiwalled carbon nanotubes/multiwalled graphene foam (MGF) have been first demonstrated to achieve both superior terahertz shielding and stealth performance due to the dominant absorption loss with negligible reflection. The terahertz shielding effectiveness values of GF and MGF, both 3 mm thick, reach up to 74 and 61 dB. Meanwhile, their average terahertz reflection loss values are achieved up to 23 and 30 dB, respectively, which are the best results in existing broadband terahertz shielding/stealth materials. Importantly, their qualified absorption bandwidths (reflection loss value larger than 10 dB) cover the entire measured frequency band of 0.1-1.6 THz. Furthermore, the quantitative relationships between the terahertz shielding effectiveness, reflection loss, and material parameters are accurately established, which should facilitate the material design for terahertz shielding and stealth. Comprehensively considering the important indicators of density, bandwidth, and intensity, the specific average terahertz shielding coefficient and the specific average terahertz absorption performance are achieved up to 1.1 × 10 5 and 3.6 × 10 4 dB cm 3 g −1 , respectively, which is over thousands of times larger than other kinds of materials reported previously. Shielding/Stealth MaterialsThe...
In this work, a three-dimensional (3D) porous MXene/GO foam (MGOF) was successfully synthesized and exhibited an excellent terahertz stealth property covering a whole measurement frequency of 0.2–2.0 THz. This is due to the ingenious assembly of two functional two-dimensional materials that have different advantages. The multiscale micro-nanostructure constructed with the 3D porous MGOF can effectively increase the terahertz scattering and refraction. Furthermore, MXene sheets with high conductivity can enhance the responsiveness to the terahertz wave. By adjusting the content of MXene in the MGOF, it exhibits a maximum reflection loss (RL) of 37 dB with a 100% qualified frequency bandwidth (RL > 10 dB), which is the most outstanding result in the available reference. In addition, the optimal average terahertz RL values of MGOF were up to 30.6 dB, which is 100% higher than the best data presented in previous work. Benefitting from an ultralow density, a high RL value, and a wide bandwidth, the maximum specific average terahertz absorption performance can reach 4.6 × 104 dB g–1 cm3, which is more than 4000 times that of other materials. In addition, the regulation of the terahertz absorption property through microstructure and morphology control is reported for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.