Objectives-Tone production is particularly important for communicating in tone languages such as Mandarin Chinese. In the present study, an artificial neural network was used to recognize tones produced by adult native speakers. The purposes of the study were (1) to test the sensitivity of the neural network to speaker variation typically in adult speaker groups, (2) to evaluate two normalization procedures to overcome the effects of speaker variation, and (3) to compare tone recognition performance of the neural network with that of the human listeners.Design-A feedforward multilayer neural network was used. Twenty-nine adult native Mandarin Chinese speakers were recruited to record tone samples. The F0 contours of the vowel part of the 1044 monosyllabic words recorded were extracted using an autocorrelation method. Samples from the F0 contours were used as inputs to the neural network. The efficacy of the neural network was first tested by varying the number of inputs and the number of neurons in the hidden layer from 1 to 16. The sensitivity of the neural network to speaker variation was tested by (1) using the raw F0 data from speech tokens of a number of randomly drawn speakers that varied from 1 to 29, (2) using the raw F0 data from speech tokens of either male-only or female-only speakers, and (3) using two sets of normalized F0 data (i.e., tone 1-based normalization and first-order derivative) from speech tokens from a number of randomly drawn speakers that varied from 1 to 29. The recognition performance of the neural network under several experimental conditions was compared with the corresponding recognition performance of 10 normal-hearing, native Mandarin Chinese speaking adult listeners.Results-Three inputs and four hidden neurons were found to be sufficient for the neural network to perform at about 85% correct using speech samples without normalization. The performance of the neural network was affected by variation across speakers particularly between genders. Using the tone 1-based normalization procedure, the performance of the neural network improved significantly. The recognition accuracy of the neural network as a whole or for each tone was comparable with that of the human listeners.Conclusions-The neural network can be used to evaluate the tone production of Mandarin Chinese speaking adults with human listener-like recognition accuracy. The tone 1-based normalization procedure improves the performance of the neural network to human listener-like accuracy. The success of our neural network in recognizing tones from multiple speakers supports its utility for evaluating tone production. Further testing of the neural network with hearing-impaired speakers might reveal its potential use for clinical evaluation of tone production.
As typical discrete event systems, flexible manufacturing systems have been extensively studied in such aspects as modeling, control and performance analysis. One important topic in the study of such systems is the deadlock detection, prevention and avoidance. In the past decade, two major modeling formalisms, i.e., Petri nets and digraphs, have been adopted for developing deadlock control policies for flexible manufacturing systems. In this paper, the concepts of slack, knot, order and effective free space of circuits in the digraph are established and used to concisely and precisely quantify the sufficient conditions for a system state to be live. Necessary conditions for this liveness is quantified for a special class of system states -called evaluation states. The significance of the result is that the conditions are true for avoiding both primary deadlocks and impending deadlocks that are arbitrary steps away from a primary one, whereas only second level deadlocks have been studied in the literature. Examples are provided to illustrate the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.