Background Dextrorotatory borneol (D-borneol), a cyclic monoterpene, is widely used in traditional Chinese medicine as an efficient topical analgesic drug. Fresh leaves of Cinnamomum trees, e.g., C. burmannii and C. camphor, are the main sources from which D-borneol is extracted by steam distillation, yet with low yields. Insufficient supply of D-borneol has hampered its clinical use and production of patent remedies for a long time. Biological synthesis of D-borneol offers an additional approach; however, mechanisms of D-borneol biosynthesis remain mostly unresolved. Hence, it is important and necessary to elucidate the biosynthetic pathway of D-borneol. Results Comparative analysis on the gene expression patterns of different D-borneol production C. burmannii samples facilitates elucidation on the underlying biosynthetic pathway of D-borneol. Herein, we collected three different chemotypes of C. burmannii, which harbor different contents of D-borneol.A total of 100,218 unigenes with an N50 of 1,128 bp were assembled de novo using Trinity from a total of 21.21 Gb clean bases. We used BLASTx analysis against several public databases to annotate 45,485 unigenes (45.38%) to at least one database, among which 82 unigenes were assigned to terpenoid biosynthesis pathways by KEGG annotation. In addition, we defined 8,860 unigenes as differentially expressed genes (DEGs), among which 13 DEGs were associated with terpenoid biosynthesis pathways. One 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and two monoterpene synthase, designated as CbDXS9, CbTPS2 and CbTPS3, were up-regulated in the high-borneol group compared to the low-borneol and borneol-free groups, and might be vital to biosynthesis of D-borneol in C. burmannii. In addition, we identified one WRKY, two BHLH, one AP2/ERF and three MYB candidate genes, which exhibited the same expression patterns as CbTPS2 and CbTPS3, suggesting that these transcription factors might potentially regulate D-borneol biosynthesis. Finally, quantitative real-time PCR was conducted to detect the actual expression level of those candidate genes related to the D-borneol biosynthesis pathway, and the result showed that the expression patterns of the candidate genes related to D-borneol biosynthesis were basically consistent with those revealed by transcriptome analysis. Conclusions We used transcriptome sequencing to analyze three different chemotypes of C. burmannii, identifying three candidate structural genes (one DXS, two monoterpene synthases) and seven potential transcription factor candidates (one WRKY, two BHLH, one AP2/ERF and three MYB) involved in D-borneol biosynthesis. These results provide new insight into our understanding of the production and accumulation of D-borneol in C. burmannii.
In the last decade, several studies have relied on a small number of plastid genomes to deduce deep phylogenetic relationships in the species-rich Myrtaceae. Nevertheless, the plastome of Rhodomyrtus tomentosa, an important representative plant of the Rhodomyrtus (DC.) genera, has not yet been reported yet. Here, we sequenced and analyzed the complete chloroplast (CP) genome of R. tomentosa, which is a 156,129-bp-long circular molecule with 37.1% GC content. This CP genome displays a typical quadripartite structure with two inverted repeats (IRa and IRb), of 25,824 bp each, that are separated by a small single copy region (SSC, 18,183 bp) and one large single copy region (LSC, 86,298 bp). The CP genome encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes and three pseudogenes (ycf1, rps19, ndhF). A considerable number of protein-coding genes have a universal ATG start codon, except for psbL and ndhD. Premature termination codons (PTCs) were found in one protein-coding gene, namely atpE, which is rarely reported in the CP genome of plants. Phylogenetic analysis revealed that R. tomentosa has a sister relationship with Eugenia uniflora and Psidium guajava. In conclusion, this study identified unique characteristics of the R. tomentosa CP genome providing valuable information for further investigations on species identification and the phylogenetic evolution between R. tomentosa and related species.
Background The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. Results The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. Conclusion The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.
Lycium chinense Mill, an important Chinese herbal medicine, is widely used as a dietary supplement and food. Here the chloroplast (CP) genome of L. chinense was sequenced and analyzed, revealing a size of 155,756 bp and with a 37.8% GC content. The L. chinense CP genome comprises a large single copy region (LSC) of 86,595 bp and a small single copy region (SSC) of 18,209 bp, and two inverted repeat regions (IRa and IRb) of 25,476 bp separated by the single copy regions. The genome encodes 114 genes, 16 of which are duplicated. Most of the 85 protein-coding genes (CDS) had standard ATG start codons, while 3 genes including rps12, psbL and ndhD had abnormal start codons (ACT and ACG). In addition, a strong A/T bias was found in the majority of simple sequence repeats (SSRs) detected in the CP genome. Analysis of the phylogenetic relationships among 16 species revealed that L. chinense is a sister taxon to Lycium barbarum. Overall, the complete sequence and annotation of the L. chinense CP genome provides valuable genetic information to facilitate precise understanding of the taxonomy, species and phylogenetic evolution of the Solanaceae family.
Trans-isopentenyl diphosphate synthases (TIDSs) genes are known to be important determinants for terpene diversity and the accumulation of terpenoids. The essential oil of Cinnamomum camphora, which is rich in monoterpenes, sesquiterpenes, and other aromatic compounds, has a wide range of pharmacological activities and has therefore attracted considerable interest. However, the TIDS gene family, and its relationship to the camphor tree (C. camphora L. Presl.), has not yet been characterized. In this study, we identified 10 TIDS genes in the genome of the C. camphora borneol chemotype that were unevenly distributed on chromosomes. Synteny analysis revealed that the TIDS gene family in this species likely expanded through segmental duplication events. Furthermore, cis-element analyses demonstrated that C. camphora TIDS (CcTIDS) genes can respond to multiple abiotic stresses. Finally, functional characterization of eight putative short-chain TIDS proteins revealed that CcTIDS3 and CcTIDS9 exhibit farnesyl diphosphate synthase (FPPS) activity, while CcTIDS1 and CcTIDS2 encode geranylgeranyl diphosphate synthases (GGPPS). Although, CcTIDS8 and CcTIDS10 were found to be catalytically inactive alone, they were able to bind to each other to form a heterodimeric functional geranyl diphosphate synthase (GPPS) in vitro, and this interaction was confirmed using a yeast two-hybrid assay. Furthermore, transcriptome analysis revealed that the CcTIDS3, CcTIDS8, CcTIDS9, and CcTIDS10 genes were found to be more active in C. camphora roots as compared to stems and leaves, which were verified by quantitative real-time PCR (qRT-PCR). These novel results provide a foundation for further exploration of the role of the TIDS gene family in camphor trees, and also provide a potential mechanism by which the production of camphor tree essential oil could be increased for pharmacological purposes through metabolic engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.