BACKGROUND The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS We observed a significant association (P<1.00×10 −10) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P = 5.10×10 −5) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae.
This paper explores biogeography-based learning particle swarm optimization (BLPSO). Specifically, based on migration of biogeography-based optimization (BBO), a new biogeography-based learning strategy is proposed for particle swarm optimization (PSO), whereby each particle updates itself by using the combination of its own personal best position and personal best positions of all other particles through the BBO migration. The proposed BLPSO is thoroughly evaluated on 30 benchmark functions from CEC 2014. The results are very promising, as BLPSO outperforms five well-established PSO variants and several other representative evolutionary algorithms.
Learning over massive data stored in different locations is essential in many real-world applications. However, sharing data is full of challenges due to the increasing demands of privacy and security with the growing use of smart mobile devices and IoT devices. Federated learning provides a potential solution to privacy-preserving and secure machine learning, by means of jointly training a global model without uploading data distributed on multiple devices to a central server. However, most existing work on federated learning adopts machine learning models with full-precision weights, and almost all these models contain a large number of redundant parameters that do not need to be transmitted to the server, consuming an excessive amount of communication costs. To address this issue, we propose a federated trained ternary quantization (FTTQ) algorithm, which optimizes the quantized networks on the clients through a selflearning quantization factor. A convergence proof of the quantization factor and the unbiasedness of FTTQ is given. In addition, we propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems. Empirical experiments are conducted to train widely used deep learning models on publicly available datasets, and our results demonstrate the effectiveness of FTTQ and T-FedAvg compared with the canonical federated learning algorithms in reducing communication costs and maintaining the learning performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.