The protein signal transducer and activator of transcription 5 (STAT5) of the JAK/STAT pathway is constitutively activated because of its phosphorylation by tyrosine kinase activity of fusion protein BCR-ABL in chronic myelogenous leukemia (CML) cells. This study investigated the potential therapeutic effect of STAT5 decoy oligodeoxynucleotides (ODN) using leukemia K562 cells as a model. Our results showed that transfection of 21-mer-long STAT5 decoy ODN into K562 cells effectively inhibited cell proliferation and induced cell apoptosis. Further, STAT5 decoy ODN downregulated STAT5 targets bcl-xL, cyclinD1, and c-myc at both mRNA and protein levels in a sequence-specific manner. Collectively, these data demonstrate the therapeutic effect of blocking the STAT5 signal pathway by cis-element decoy for cancer characterized by constitutive STAT5 activation. Thus, our study provides support for STAT5 as a potential target downstream of BCR-ABL for CML treatment and helps establish the concept of targeting STAT5 by decoy ODN as a novel therapy approach for imatinib-resistant CML.
Curcumin, the active component of turmeric, has been shown to protect against carcinogenesis and prevent tumor development in cancer. In our study, we tested the efficacy of a synthetic curcumin analogue, known as hydrazinocurcumin (HC), in breast cancer cells. The results demonstrated that compared to curcumin, HC was more effective in inhibiting STAT3 phosphorylation and downregulation of an array of STAT3 downstream targets which contributed to suppression of cell proliferation, loss of colony formation, depression of cell migration and invasion as well as induction of cell apoptosis. It was concluded that HC is a potent agent in the inhibition of STAT3 with more favorable pharmacological activity than curcumin, and HC may have translational potential as an effective cancer therapeutic or preventive agent for human breast carcinoma.
Insulin resistance and β-cell dysfunction are two main molecular bases yet to be further elucidated for type 2 diabetes (T2D). Accumulating evidence indicates that stimulator of interferon genes (STING) plays an important role in regulating insulin sensitivity. However, its function in β-cells remains unknown. Herein, using global STING knockout (STING−/−) and β-cell–specific STING knockout (STING-βKO) mouse models, we revealed a distinct role of STING in the regulation of glucose homeostasis through peripheral tissues and β-cells. Specially, although STING−/− beneficially alleviated insulin resistance and glucose intolerance induced by high-fat diet, it surprisingly impaired islet glucose-stimulated insulin secretion (GSIS). Importantly, STING is decreased in islets of db/db mice and patients with T2D, suggesting a possible role of STING in β-cell dysfunction. Indeed, STING-βKO caused glucose intolerance due to impaired GSIS, indicating that STING is required for normal β-cell function. Islet transcriptome analysis showed that STING deficiency decreased expression of β-cell function–related genes, including Glut2, Kcnj11, and Abcc8, contributing to impaired GSIS. Mechanistically, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and cleavage under targets and tagmentation (CUT&Tag) analyses suggested that Pax6 was the transcription factor that might be associated with defective GSIS in STING-βKO mice. Indeed, Pax6 messenger RNA and protein levels were down-regulated and its nuclear localization was lost in STING-βKO β-cells. Together, these data revealed a function of STING in the regulation of insulin secretion and established pathophysiological significance of fine-tuned STING within β-cells and insulin target tissues for maintaining glucose homeostasis.
Recessive mutations in IER3IP1 (immediate early response 3 interacting protein 1) cause a syndrome of microcephaly, epilepsy, and permanent neonatal diabetes (MEDS). IER3IP1 encodes an endoplasmic reticulum (ER) membrane protein, which is crucial for brain development; however, the role of IER3IP1 in β cells remains unknown. We have generated two mouse models with either constitutive or inducible IER3IP1 deletion in β cells, named IER3IP1-βKO and IER3IP1-iβKO, respectively. We found that IER3IP1-βKO causes severe early-onset, insulin-deficient diabetes. Functional studies revealed a markedly dilated β-cell ER along with increased proinsulin misfolding and elevated expression of the ER chaperones, including PDI, ERO1, BiP, and P58IPK. Islet transcriptome analysis confirmed by qRT-PCR revealed decreased expression of genes associated with β-cell maturation, cell cycle, and antiapoptotic genes, accompanied by increased expression of antiproliferation genes. Indeed, multiple independent approaches further demonstrated that IER3IP1-βKO impaired β-cell maturation and proliferation, along with increased condensation of β-cell nuclear chromatin. Inducible β-cell IER3IP1 deletion in adult (8-wk-old) mice induced a similar diabetic phenotype, suggesting that IER3IP1 is also critical for function and survival even after β-cell early development. Importantly, IER3IP1 was decreased in β cells of patients with type 2 diabetes (T2D), suggesting an association of IER3IP1 deficiency with β-cell dysfunction in the more-common form of diabetes. These data not only uncover a critical role of IER3IP1 in β cells but also provide insight into molecular basis of diabetes caused by IER3IP1 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.