Soluble polysaccharides from the microbial fermentation of agricultural by-products were considered as potential functional ingredients mainly having probiotic benefits. Herein, soluble polysaccharides (FSRP) were separated from soybean residue fermented by...
In this paper, a relaxed variable metric primal-dual fixed-point algorithm is proposed for solving the convex optimization problem involving the sum of two convex functions where one is differentiable with the Lipschitz continuous gradient while the other is composed of a linear operator. Based on the preconditioned forward–backward splitting algorithm, the convergence of the proposed algorithm is proved. At the same time, we show that some existing algorithms are special cases of the proposed algorithm. Furthermore, the ergodic convergence and linear convergence rates of the proposed algorithm are established under relaxed parameters. Numerical experiments on the image deblurring problems demonstrate that the proposed algorithm outperforms some existing algorithms in terms of the number of iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.