In this paper, DI defects are studied via experiments and calculations. The 2 MeV H+ is used to carry on an ion-beam-induced luminescence (IBIL) experiment to measure the in-situ luminescence of untreated and annealed 4H-SiC at 100 K. The results show that the luminescence intensity decreases rapidly with increasing H+ fluence, which means the losses of optical defect centers. In addition, the evident peak at 597 nm (2.07 eV) is the characteristic peak of 4H-SiC, and the weak peak between 400 nm and 450 nm is attributed to the DI optical center. Moreover, the first-principles calculation of 4H-SiC is adopted to discuss the origin of DI defects. The optical transition of the defect SiC(CSi)2 from q = 0 to q = 1 is considered the experimental value of the DI defect center.
The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidences for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. At lower temperatures down to 0.04 K, the resistivities become saturated, following the prediction of the Kondo model. A linear scaling behavior $\sigma _{{\boldsymbol{xy}}}^{{{\boldsymbol AHE}}}{\rm{\ }}\sim{\rm{\ }}{\sigma }_{{\boldsymbol{xx}}}$ between anomalous Hall conductivity $\sigma _{{\boldsymbol{xy}}}^{{\boldsymbol{AHE}}}$ and conductivity ${\sigma }_{{\boldsymbol{xx}}}{\rm{\ }}$is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.