The factors affecting the catalytic activity (CA) of monodisperse nanoparticles (NPs), including size, crystallinity, shape, and high indexed facets, have been well-studied these past years; here, we report that the CA is significantly increased when monodisperse Pt near-spherical NPs are cross-linked into Pt nanowires (NWs) using two model catalytic reactions, reduction of either nitrophenol or potassium ferricyanide. In this work, monodisperse Pt NPs or NWs were prepared by using glucose as a surfactant and sodium borohydride as a reducing agent in aqueous solution at room temperature. Monodisperse Pt NPs or Pt NWs can be obtained by simply controlling the molar ratio, R, of the sodium borohydride to the platinum salt, [NaBH 4 ]/[Pt 4+ ]. Different types of Pt NP or NW colloids were used as catalysts in the catalytic reactions above. The results showed that the normalized rate constants of the catalytic reactions increase mildly with increasing particle size for the monodisperse Pt NPs, but they drastically increase for the Pt NWs with a similar mean size as compared with the monodisperse Pt NP colloids. It is thus expected that the large abundance of grain boundaries, generated when NPs are linearly linked into NWs, may be responsible for this enhanced catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.