To follow the design strategy of traditional biphasic calcium phosphate (BCP) ceramic, in the present study, strontium-doped biphasic calcium phosphate bone cement (Sr-BCPC) composites comprising Sr-β-tricalcium phosphate (TCP)/Sr-hydroxyapatite (HAP) had been prepared for the first time using Sr -β-TCP/tetracalcium phosphate (TTCP) as a cement powder and diluted phosphoric acid as a cement liquid. The phase composition, setting time, compressive strength, washout resistance, in vitro degradation rate, microstructure evolutions, hydration dynamics and cytotoxicity of Sr-BCPC at various Sr contents were intensively investigated. It was found that the final cement product was composed of entangled Sr-HAP nano-needles and cobblestone-like Sr-β-TCP sub-micron particles, and the weight percentages in the final cement product after hydration in simulated body fluid for 24 h were in the ranges of 60 wt%-70 wt% Sr-HAP and 30 wt%-40 wt% Sr-β-TCP, respectively. Sr and the concentration of Sr exhibit significant effects on the phase compositions, compressive strength, setting time, in vitro degradation rate and cytotoxicity of the biphasic bone cement. In particular, the degradation rate increased considerably with the increase of the Sr-β-TCP phase. It is anticipated that the introduction of the 'biphasic' design into calcium phosphate bone cements is an effective strategy to improve their degradation properties.
Sr-contained calcium hydroxyapatite (SrCaHA) cement is a potential biomaterial for in vivo bone repair and surgery fixation due to its excellent biodegradability, bioactivity, biocompatibility, easily shaping and self-hardening. We had ever reported the in vitro physiochemical properties, biocompatibility and in vivo degradability of the SrCaHA cement obtained by mixing a cement powder of Ca(4)(PO(4))(2)O/CaHPO(4)/SrHPO(4) and a cement liquid of diluted H(3)PO(4) aqueous solution. In the present study, we intensively studied the influences of both Sr content and H(3)PO(4) concentration in diluted phosphoric acid aqueous solution on the setting time, hydration heat-liberation behaviours, and real-time microstructure and phase evolutions of the SrCaHA cement. The results show that both PO(4)(3-) and H(+) ions in PA solution attended the hydration reaction as reactants, and thus the increase of the PA concentration not only promoted the dissolution of Ca(4)(PO(4))(2)O but also pushed the hydration progress of SrCaHA bone cement. Sr content exhibits a remarkable retardation role on the apatite transformation of the SrCaHA cement pastes which probably attributed to its higher degree of supersaturation for yielding apatite crystals and lower transformation rate when exposed to the Sr(2+)-containing hydration system. This present results contribute to a better understanding on the hydration mechanism of the new SrCaHA cement and help to the more precisely controlling of its hydration process.
Although methods are used to treat wounds clinically, there are still many challenges in the treatment of chronic wounds due to excessive inflammatory response, difficulties in epithelialization, vascularization, and other factors. With the increasing research on adipose-derived stem cells (ADSCs) in recent years, accumulating evidence has shown that ADSCs scan promotes the healing of chronic wounds by regulating macrophage function and cellular immunity and promoting angiogenesis and epithelialization. The present study reviewed the difficulties in the treatment of chronic wounds, as well as the advantages and the mechanism of ADSCs in promoting the healing of chronic wounds, to provide a reference for the stem cell therapy of chronic wounds.
BackgroundProstaglandin analogs have been found to have more versatile uses: treatment of open-angle glaucoma, high intraocular pressure, vitiligo, and other treatments. And prostaglandin analogs have been found to have an important role in the hair growth cycle. However, prostaglandin analogs have not been sufficiently studied for hair (including hair, eyelashes, and eyebrows) regeneration. In this study, a systematic review and meta-analysis of topical prostaglandin analogs on hair loss was performed.ObjectiveThe purpose of this meta-analysis is to determine the efficacy and safety of topical prostaglandin analogs for treating hair loss.MethodsWe searched PubMed, Embase, and Cochrane Library databases comprehensively. Data were pooled using Review Manager 5.4.1, and subgroup analyses were performed if necessary.ResultsThere were six randomized controlled trials included in this meta-analysis. All studies compared prostaglandin analogs with placebo, and one trial consisted of two sets of data. The results showed that prostaglandin analogs could significantly improve the hair length and density (p < 0.001). As far as adverse events are concerned, there was no significant difference between the experimental group and the control group.ConclusionIn patients with hair loss, the topical prostaglandin analogs have better therapeutic efficacy and safety than placebo. However, the best dose and frequency of experimental treatment require further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.