BackgroundAs a plasticizer, plastic softener, and flame-retardant, tri-ortho–cresyl phosphate (TOCP) is and has been widely used in industry and reported to have a toxic effect on the male reproductive system in animals besides neurotoxicity and immunotoxicity. We have reported that TOCP inhibits spermatogenesis and induces autophagy of rat spermatogonial stem cells, but it is still unknown whether TOCP induces autophagy of mouse Leydig cells and its potential mechanism.MethodsCell viability was observed by MTT assay. Level of testosterone was measured by radioimmunoassay. Apoptosis was observed by AnnexinV-FITC/PI assay. The contents of LC3, Atg5-Atg12, and Beclin 1 were detected by Western blotting analysis. Autophagosomes were investigated by transmission electron microscopy. The contents of MDA and GSH and the activities of SOD, GSH-PX, total antioxidant status (TAS) and total oxidant status (TOS) were measured by oxidative stress kits.ResultsThe present study shows that TOCP markedly inhibited viability and testosterone output of mouse Leydig TM3 cells but had no effect on apoptosis. However, TOCP significantly increased both LC3-II and the ratio of LC3-II to LC3-I and the contents of autophagy proteins Atg5 and Beclin 1. Transmission electron microscopy (TEM) showed that TOCP increased autophagic vacuoles of the cytoplasm, indicating that TOCP could induce autophagy of the cells. TOCP significantly induced oxidative stress of mouse Leydig TM3 cells. H2O2 also inhibited viability and induced autophagy of the cells; however, inhibition of oxidative stress by N-acetyl-L-cysteine (NAC) could rescue the inhibition of cell viability and induction of autophagy by TOCP.ConclusionsThe results show oxidative stress might be involved in TOCP-induced autophagy of mouse Leydig TM3 cells.
Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis.
EC patients under 50-year-old had distinctive clinicopathological characteristics compared with patients over 50-year-old. Despite more often presenting with stage III and IV disease, survival rates were better in the younger cohort. Prognostic factors for ECSS in patients under 50 differed from those in all age patients.
Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners and flame-retardants in industry and reported to have male reproductive toxicology. However, it is still unknown whether TOCP affects the female reproductive system and its underlying mechanism. In the present study, we found that TOCP exposure significantly decreased ovarian coefficient, caused disintegration and depletion of the granulosa cells in the ovary tissue and significantly inhibited the level of serum estradiol (E2). TOCP markedly increased both LC3-II and the ratio of LC3-II/LC3-I as well as autophagy proteins ATG5 and Beclin1 in the ovary tissue, implying that TOCP could induce autophagy in the ovary tissue. To further investigate the potential mechanism, primary ovarian granulosa cells were isolated in vitro and treated with 0–0.5 mM TOCP for 48 h. We showed that TOCP decreased the number of viable mouse granulosa cells without affecting cell cycle and apoptosis of the cells. Intriguingly, TOCP treatment markedly increased both LC3-II and the ratio of LC3-II/LC3-I as well as ATG5 and Beclin1. Furthermore, transmission electron microscopy (TEM) showed that autophagic vesicles in the cytoplasm increased significantly in the TOCP-treated cells, indicating that TOCP could induce autophagy in the cells. Taken together, TOCP reduces the number of viable cells and induces autophagy in mouse ovarian granulosa cells without affecting cell cycle and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.