Interleukin (IL)-7 plays a vital role in proliferation and activation of T cells, however, its signaling through CD127 is impaired in T cells in cancers and chronic infections. The mechanisms underlying T helper 17 (Th17) cell responses by IL-7 in melanoma remain not fully understood. The aim of this study was to assess the effect of IL-7 signaling on Th17 responses in patients with primary cutaneous melanoma. Healthy and primary cutaneous melanoma donors were selected for this study of Th17 cell function. IL-17 + CD4 + Th17 cells and CD127 expression on Th17 cells were determined by flow cytometry. Cytokine level was measured by ELISA. Peripheral and tissueinfiltrating CD4 + T cells were isolated using magnetic beads, and then stimulated with IL-7 and/or signal transducer and activator of transcription 5 inhibitor. Activated signaling molecules were analyzed by flow cytometry. Peripheral and tumor-infiltrating Th17 cells percentage was decreased, while peripheral IL-7 level was also reduced in melanoma patients. There was no significant difference of CD127 expression on Th17 cells between melanoma patients and controls. Antiapoptotic protein Bcl-2 was downregulated, whereas proapoptotic protein-activated caspase-3 was upregulated in peripheral and tissue-infiltrating Th17 cells in melanoma patients.Higher concentration of IL-7 (10 ng/mL), but not lower IL-7 concentration (1 ng/mL), promoted Bcl-2 expression and decreased caspase-3 expression in Th17 cells in melanoma patients. Inhibition of signal transducer and activator of transcription 5 resulted in the downregulation of Bcl-2 while upregulation of caspase-3 in Th17 cells. The present data suggested that reduced IL-7 responsiveness might be insufficient for Th17 activation in patients with primary cutaneous melanoma.
BackgroundSkin cutaneous melanoma (SKCM) is a highly malignant skin tumor. DIRAS2 is considered to be a tumor suppressor gene; however, its function in SKCM has not been explored.MethodsThe Gene Expression Profiling Interactive Analysis (GEPIA) was implemented to investigate the expression of DIRAS2 in SKCM, and plot the survival curve to determine the effect of DIRAS2 on the survival rates of SKCM patients. Then, the correlation between DIRAS2 and tumor immune infiltration was also discussed, and the expression of DIRAS2 and immune infiltration level in SKCM immune cells was determined using TIMER. The top 100 genes most associated with DIRAS2 expression were used for functional enrichment analysis. In order to confirm the anti-cancer effects of DIRAS2 in SKCM in the data analysis, in vitro assays as well as in vivo studies of DIRAS2 on SKCM tumor cell proliferation, migration, invasion, and metastasis were conducted. Western blot and immunofluorescence assay were employed to study the relationship between DIRAS2 and Wnt/β-catenin signaling pathway in SKCM.ResultsDIRAS2 expression was shown to be significantly correlated with tumor grade using univariate logistic regression analysis. DIRAS2 was found to be an independent prognostic factor for SKCM in multivariate analysis. Of note, DIRAS2 expression levels were positively correlated with the infiltration levels of B cells, CD4+ T cells, and CD8+ T cells in SKCM. The infiltration of B cells, CD4+ T cells, and CD8+ T cells was positively correlated with the cumulative survival rate of SKCM patients. In vitro experiments suggested that proliferation, migration, invasion, and metastasis of SKCM tumor cells were distinctly enhanced after DIRAS2 knockdown. Furthermore, DIRAS2 depletion promoted melanoma growth and metastasis in vivo. As for the mechanism, silencing DIRAS2 can activate the signal transduction of the Wnt/β-catenin signaling pathway.ConclusionDIRAS2 functions as a tumor suppressor gene in cases of SKCM by inhibiting the Wnt/β-catenin signaling. It is also associated with immune infiltration in SKCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.