To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory this requires when the network size is large. To solve the key pre-distribution problem, two elegant key pre-distribution approaches have been proposed recently.In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a new key pre-distribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for the adversary to attack a large fraction of the network before it can achieve any significant gain.
To achieve security in wireless sensor networks, it is important to be able to encrypt and authenticate messages sent between sensor nodes. Before doing so, keys for performing encryption and authentication must be agreed upon by the communicating parties. Due to resource constraints, however, achieving key agreement in wireless sensor networks is non-trivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and other public-key based schemes, are not suitable for wireless sensor networks due to the limited computational abilities of the sensor nodes. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory this requires when the network size is large. To solve the key pre-distribution problem, two elegant key pre-distribution approaches have been proposed recently.In this paper, we provide a framework in which to study the security of key pre-distribution schemes, propose a new key pre-distribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an in-depth analysis of our scheme in terms of network resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller-scale network breaches to an adversary, and makes it necessary for the adversary to attack a large fraction of the network before it can achieve any significant gain.
Randomization has emerged as a useful technique for data disguising in privacy-preserving data mining. Its privacy properties have been studied in a number of papers. Kargupta et al. challenged the randomization schemes, and they pointed out that randomization might not be able to preserve privacy. However, it is still unclear what factors cause such a security breach, how they affect the privacy preserving property of the randomization, and what kinds of data have higher risk of disclosing their private contents even though they are randomized.We believe that the key factor is the correlations among attributes. We propose two data reconstruction methods that are based on data correlations. One method uses the Principal Component Analysis (PCA) technique, and the other method uses the Bayes Estimate (BE) technique. We have conducted theoretical and experimental analysis on the relationship between data correlations and the amount of private information that can be disclosed based our proposed data reconstructions schemes. Our studies have shown that when the correlations are high, the original data can be reconstructed more accurately, i.e., more private information can be disclosed.To improve privacy, we propose a modified randomization scheme, in which we let the correlation of random noises "similar" to the original data. Our results have shown that the reconstruction accuracy of both PCA-based and BEbased schemes become worse as the similarity increases.
Many sensor network applications require sensors' locations to function correctly. Despite the recent advances, location discovery for sensor networks in hostile environments has been mostly overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile environments. The security of location discovery can certainly be enhanced by authentication. However, the possible node compromises and the fact that location determination uses certain physical features (e.g., received signal strength) of radio signals make authentication not as effective as in traditional security applications. This paper presents two methods to tolerate malicious attacks against range-based location discovery in sensor networks. The first method filters out malicious beacon signals on the basis of the "consistency" among multiple beacon signals, while the second method tolerates malicious beacon signals by adopting an iteratively refined voting scheme. Both methods can survive malicious attacks even if the attacks bypass authentication, provided that the benign beacon signals constitute the majority of the beacon signals. This paper also presents the implementation and experimental evaluation (through both field experiments and simulation) of all the secure and resilient location estimation schemes that can be used on the current generation of sensor platforms (e.g., MICA series of motes), including the techniques proposed in this paper, in a network of MICAz motes. The experimental results demonstrate the effectiveness of the proposed methods, and also give the secure and resilient location estimation scheme most suitalbe for the current generation of sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.