The Chinese medicine formula Pien Tze Huang (PZH) has been applied to the treatment of various diseases, the reported anti-tumor mechanisms included regulation of inflammation-associated cytokine secretion and cancer growth pathways. However, the potential influence of PZH on tumor metabolism remains unclear. This study aimed to investigate the global effect of PZH on hepatocellular carcinoma (HCC) compared with the anti-tumor agent sorafenib based on tandem mass tag (TMT) label proteomic and phosphoproteomic analysis in addition to parallel reaction monitoring (PRM) verification. It was observed that PZH could inhibit tumor weight by 59–69% in different concentrations. TMT proteomic studies indicated that fructose/mannose metabolism and glucagon signaling pathway in PZH group, and arachidonic acid metabolism and PPAR signaling pathway in sorafenib group, were significantly enriched, while glycolysis/gluconeogenesis pathway was found to be enriched remarkably both in PZH and sorafenib groups in TMT phosphoproteomic study. PRM verification further indicated that both PZH and sorafenib could down-regulate phosphorylations of the glycolytic enzymes phosphofructokinases 1, fructose-bisphosphate Aldolase A, phosphoglycerate mutase 2 and lactate dehydrogenase A chain, while phosphorylations of long chain fatty acid CoA ligase in fatty acid activation and acetyl-coenzyme A synthetase in glycolysis were significantly inhibited by PZH and sorafenib, respectively. This study proposed that PZH shared a similar anti-tumor mechanism of metabolic regulation to sorafenib, but differed in the regulation of some metabolic nodes. This is the first time to uncover the relationship between the anti-tumor effect of PZH and metabolic related enzymes, which distinguished from the known mechanisms of PZH. These data provided the potential molecular basis for PZH acting as a therapeutic drug for HCC, and offered cues of manipulation on Warburg effect under the treatment of PZH.
The Chinese medicine formula Pien Tze Huang (PZH) has been applied to the treatment of various diseases, the reported anti-tumor mechanisms included regulation of inflammation-associated cytokine secretion and cancer growth pathways. However, the potential influence of PZH on tumor metabolism remains unclear. This study aimed to investigate the global effect of PZH on hepatocellular carcinoma (HCC) compared with the anti-tumor agent sorafenib based on proteomic and phosphoproteomic analysis in addition to parallel response monitoring (PRM) verification. It was observed that PZH could inhibit tumor weight by 59%-69% in different concentrations. Proteomic studies indicated that fructose/mannose metabolism and glucagon signaling pathway in PZH group, and arachidonic acid metabolism and PPAR signaling pathway in sorafenib group, were significantly enriched, while glycolysis/gluconeogenesis pathway was found to be enriched remarkably both in PZH and sorafenib groups in phosphoproteomic study. Expressions of significant proteins/peptides in the enriched pathways were further verified by using PRM method, and the results verified that both PZH and sorafenib could down-regulate phosphorylations of the metabolic enzymes phosphofructokinases 1, fructose-bisphosphate Aldolase A, phosphoglycerate mutase 2 and lactate dehydrogenase A chain in glycolytic pathway, furthermore, phosphorylations of long chain fatty acid CoA ligase in fatty acid activation and acetyl-coenzyme A synthetase in glycolysis were obviously inhibited by PZH and sorafenib, respectively. This study proposed that PZH shared a similar anti-tumor mechanism of metabolic regulation to sorafenib, but differed in the regulation of some metabolic nodes. This is the first time to uncover the relationship between the anti-tumor effect of PZH and metabolic related enzymes, which distinguished from the known mechanisms of PZH. These data provided the potential molecular basis for PZH acting as a therapeutic drug for HCC, and offered cues of manipulation on Warburg effect under the treatment of PZH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.