A novel nano-hydroxyapatite (HA)/chitosan composite scaffold with high porosity was developed. The nano-HA particles were made in situ through a chemical method and dispersed well on the porous scaffold. They bound to the chitosan scaffolds very well. This method prevents the migration of nano-HA particles into surrounding tissues to a certain extent. The morphologies, components, and biocompatibility of the composite scaffolds were investigated. Scanning electron microscopy, porosity measurement, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transformed infrared spectroscopy were used to analyze the physical and chemical properties of the composite scaffolds. The biocompatibility was assessed by examining the proliferation and morphology of MC 3T3-E1 cells seeded on the scaffolds. The composite scaffolds showed better biocompatibility than pure chitosan scaffolds. The results suggest that the newly developed nano-HA/chitosan composite scaffolds may serve as a good three-dimensional substrate for cell attachment and migration in bone tissue engineering.
Chitosan is a potential material for the preparation of nerve repair conduits. In order to find a better chitosan for the application in peripheral nerve regeneration, the effects of the degree of deacetylation (DD) on the physicochemical properties and Schwann cell affinity of chitosan films have been evaluated. Six kinds of chitosan samples with similar molecular weight, but various DD in a range from 70.1 to 95.6% were prepared from one stock chitosan material and fabricated into films. X-ray diffraction analysis showed that there were more crystalline regions in the higher DD chitosan films. Swelling and mechanical property measurements revealed that the swelling index of chitosan films decreased and their elastic modulus and tensile strength increased with the increase in DD. The adsorption amount of fibronectin and laminin on chitosan films was measured by means of enzyme-linked immunosorbent assay (ELISA). Culture of adult rat Schwann cells on the films showed that the chitosan films with higher DD provided better substrata for Schwann cell spreading and proliferation. In conclusion, DD of chitosan plays an important role in their physicochemical properties and affinity with Schwann cells. The results suggest that chitosan with a DD higher than 90% is considered as a promising material for application in peripheral nerve regeneration.
In this study, a novel method was developed to create porous tubular scaffolds with desirable mechanical properties and controllable inner structure from chitosan, for nerve tissue engineering. Chitosan fiber-based yarns were first used to create porous hollow tubes, which served as the outer wall of the scaffolds, through an industrial knitting process. Then, an innovative molding technique was developed and used to produce inner matrices with multiple axially oriented macrochannels and radially interconnected micropores. Acupuncture needles were used as mandrels during molding to improve the safety and controllability of the process. In vitro characterization demonstrated that the scaffolds possessed suitable mechanical strength, porosity, swelling, and biodegradability for applications in nerve tissue engineering. In vitro cell culture experiments showed that differentiated Neuro-2a cells grew along the oriented macrochannels and the interconnected micropores were beneficial for nutrient diffusion and cell ingrowth to the scaffold's interior. Collectively, the well-defined architectural features in addition to the desirable mechanical and biological properties of the scaffolds make them promising for nerve tissue engineering.
Multimicrotubule chitosan conduits (M-conduits) were fabricated using novel molds and a thermal-induced phase-separation technique. Hollow chitosan conduits (H-conduits) with an inner diameter of 1-5 mm and a wall thickness of 0.2-1.0 mm were made, and then a novel mold composed of a styrofoam insulating pedestal with several holes and a stainless steel cover plate was used to make M-conduits. In brief, corresponding H-conduits were inserted upright into the holes of the styrofoam pedestal, and filled with chitosan solution, then rapidly covered with the precooled stainless steel cover plate, and then placed in a freezer. The styrofoam insulating pedestal enclosing the conduits could reduce the heat transfer through the side wall of the conduits. Gradual phase separation then occurred uniaxially in the presence of a unidirectional temperature gradient from the top end to the bottom end of the chitosan conduits. The phase-separated polymer/solvent systems were then dried in a freeze-dryer. The microtubule diameters were controlled by adjusting the polymer concentration and cooling temperature. In vitro characterization demonstrated that the mold-based multimicrotubule chitosan conduits possessed suitable mechanical strength, microtubule diameter distribution, porosity, swelling, biodegradability, and nerve cell affinity, and so they showed potential for application as nerve tissue engineering scaffolds.
Chitosan, a natural polysaccharide that has excellent biocompatibility and biodegradability, can be used as nerve conduit material. The purpose of this work was to study the ability of chitosan and some chitosan-derived materials to facilitate nerve cell attachment, differentiation and growth. The biomaterials studied were chitosan, poly-L-lysine-blended chitosan (CP), collagen-blended chitosan (CC) and albumin-blended chitosan (CA), with collagen control material. Culture of PC12 cells and fetal mouse cerebral cortex (FMCC) cells on these biomaterials was used to evaluate their nerve cell affinity. The composite materials, including CP, CC and CA, had significantly improved nerve cell affinity compared to chitosan, as established by increasing attachment, differentiation and growth of PC12 cells. FMCC cells could also grow better on composite materials than on chitosan. CP exhibited the best nerve cell affinity among these three types of composite material. CP is an even better material in promoting neurite outgrowth than collagen, a substrate that is widely used in tissue engineering, suggesting that CP is a promising candidate material for nerve regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.