This work constructively reviewed and predicted the surface strategies for catalytic CO2 reduction with 2D material, nanocluster and single-atom catalysts
Water splitting is considered as a pollution-free and efficient solution to produce hydrogen energy. Low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are needed. Recently, chemical vapor deposition is used as an effective approach to gain high-quality MoS nanosheets (NSs), which possess excellent performance for water splitting comparable to platinum. Herein, MoS NSs grown vertically on FeNi substrates are obtained with in situ growth of Fe Ni S (FNS) at the interface during the synthesis of MoS . The synthesized MoS /FNS/FeNi foam exhibits only 120 mV at 10 mA cm for HER and exceptionally low overpotential of 204 mV to attain the same current density for OER. Density functional theory calculations further reveal that the constructed coupling interface between MoS and FNS facilitates the absorption of H atoms and OH groups, consequently enhancing the performances of HER and OER. Such impressive performances herald that the unique structure provides an approach for designing advanced electrocatalysts.
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.
Ag2O/Bi2O2CO3 p-n heterojunctions are prepared with commercial Bi2O2CO3 as precursor via a simple photosynthesis process. The obtained Ag2O/Bi2O2CO3 p-n heterojunctions show higher photocatalytic activity than that of pure n-Bi2O2CO3, and the obtained Ag2O/Bi2O2CO3 (AB-4) heterojunction exhibits the best photocatalytic activity under visible light (λ > 400 nm), with which Rhodamine B, methyl blue and methyl orange can be completely degraded within 12 min. Photoluminescent spectra and photoelectrochemical measurement further indicate that the Ag2O/Bi2O2CO3 p-n heterojunctions greatly enhance the charge generation and suppress the charge recombination of photogenerated electron-hole pairs, which would be beneficial to improve their photocatalytic activity.
Icosahedral, octahedral, and cubic Pd@Pt core-shell nanocrystals with two atomic Pt layers are epitaxially generated under thermodynamic control. Such icosahedra exhibit remarkably enhanced catalytic properties for oxygen reduction reaction compared to the octahedra and cubes as well as commercial Pt/C, which can be attributed to ligand and geometry effects, especially twin-induced strain effect that is revealed by geometrical phase analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.