PRR11 is a newly identified oncogene in lung cancer, yet its role in others tumors remains unclear. Gastrointestinal tissue microarrays were used to evaluate PRR11 expression and its association with clinical outcome was analyzed in patients with hilar cholangiocarcinoma. Overexpression of PRR11 was observed in esophageal, gastric, pancreatic, colorectal, and hilar cholangiocarcinoma. Expression of PRR11 correlated with lymph node metastasis and CA199 level in two HC patient cohorts. After an R0 resection, a high level of PRR11 expression was found to be an independent indicator of recurrence (P = 0.001). In cell culture, PRR11 silencing resulted in decreased cellular proliferation, cell migration, tumor growth of QBC939 cells. Microarray analysis revealed that several genes involved in cell proliferation, cell adhesion, and cell migration were altered in PRR11-knockout cells, including: vimentin (VIM), Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1), early growth response protein (EGR1), and System A amino acid transporter1 (SNAT1). Silencing PRR11 inhibited the expression of UCHL1, EGR1, and SNAT1 proteins, with immunoassays revealing a significant correlation among the levels of these four proteins. These results indicate that PRR11 is an independent prognostic indicator for patients with HC.
Background/Aims: MicroRNAs (miRNAs) play critical roles during carcinogenesis and cancer progression. Down-regulation of miR-204 has been frequently observed in various cancers. In this study, we investigated the roles and mechanisms of miR-204 in human intrahepatic cholangiocarcinoma (ICC). Methods: The relative expression of miR-204 in ICC tissues and cell lines was monitored by qRT-PCR. Effects of miR-204 were studied in human ICC cell lines HuH28 and HuCCT1, and cells were analyzed for proliferation, migration and invasion. Expression levels of miR-204 target gene Slug and EMT markers (E-cadherin and vimentin) in ICC cell lines and tissues were measured by qRT-PCR, western blotting and immunofluorescence. Results: miR-204 was frequently downregulated in human ICC, and the low-level expression of miR-204 was significantly associated with lymph node metastasis. Overexpression of miR-204 dramatically suppressed ICC cell migration and invasion, as well as the epithelial-mesenchymal transition process (EMT). Slug was identified as a direct target of miR-204, and its downregulation by miR-204 in HuH28 cells reversed EMT, as shown by the increased expression of the epithelial marker E-cadherin and decreased expression of the mesenchymal marker vimentin. Conclusion: These findings suggest that miR-204 plays negative roles in the invasive and/or metastatic potential of ICC, and that its suppressive effects are mediated by repressing Slug expression.
N-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically. Here, we propose a deep-learning framework for analyzing lymph node whole-slide images (WSIs) to identify lymph nodes and tumor regions, and then to uncover tumor-area-to-MLN-area ratio (T/MLN). After training, our model’s tumor detection performance was comparable to that of experienced pathologists and achieved similar performance on two independent gastric cancer validation cohorts. Further, we demonstrate that T/MLN is an interpretable independent prognostic factor. These findings indicate that deep-learning models could assist not only pathologists in detecting lymph nodes with metastases but also oncologists in exploring new prognostic factors, especially those that are difficult to calculate manually.
BackgroundThe therapeutic and prognostic value of the glycolytic enzymes hexokinase, phosphofructokinase, and pyruvate kinase (PK) has been implicated in a variety of cancers, while their roles in treatment of and prognosis for hilar cholangiocarcinoma (HC) remain unclear. In this study, we determined the expression of PKM2 in and its impact on biology and clinical outcome of human HC.MethodsThe regulation and function of PKM2 in HC pathogenesis was evaluated using human tissues, molecular and cell biology, and animal models, and its prognostic significance was determined according to its impact on patient survival.ResultsWe found that expression of hexokinase 1 and the M2 splice isoform of PK (PKM2) was upregulated in HC tissues and that this expression correlated with tumor recurrence and outcome. PKM2 expression was increased in HC cases with chronic cholangitis as demonstrated by isobaric tags for relative and absolute quantification. High PKM2 expression was highly correlated with high syndecan 2 (SDC2) expression and neural invasion. PKM2 downregulation led to a decrease in SDC2 expression. Treatment with metformin markedly suppressed PKM2 and SDC2 expression at both the transcriptional and posttranscriptional levels and inhibited HC cell proliferation and tumor growth.ConclusionsPKM2 regulates neural invasion of HC cells at least in part via regulation of SDC2. Inhibition of PKM2 and SDC2 expression contributes to the therapeutic effect of metformin on HC. Therefore, PKM2 is an independent prognostic factor and potential therapeutic target for human HC.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-015-0462-6) contains supplementary material, which is available to authorized users.
Tissue sampling of biliary tract carcinomas (BTCs) for molecular characterization is challenging. The aim of this study was to investigate the possibility of identifying individual actionable mutations derived from bile cell-free DNA (cfDNA) using targeted deep sequencing. Ten BTC patients, four with gallbladder carcinomas and six with cholangiocarcinomas, were enrolled in the present study. Using targeted deep sequencing with a panel of 150 tumor-related genes, paired bile cfDNA and tumor DNA were analyzed for mutational variants individually and then compared. The present study, to the best of our knowledge, is the first to reveal that bile cfDNA is predominantly comprised of long DNA fragments, which is not the case for plasma cfDNA. Herein, paired bile cfDNA and tumors from ten BTC patients were examined using targeted deep sequencing. When comparing bile cfDNA and tumor DNA for single nucleotide variation (SNV)/insertion and deletion (Indel), the results using targeted deep sequencing revealed high sensitivity (94.7%) and specificity (99.9%). Additionally, the sensitivity of detecting a copy number variation (CNV) was 75.0%, with a specificity of 98.9%. When comparing two bile extraction methods, including percutaneous transhepatic cholangial drainage and operation, no significant difference in SNV/Indel or CNV detection sensitivity was noted. Moreover, when examining the tumor stage and incidence site, AJCC stage II and the distal bile duct both had significantly decreased CNV detection sensitivities. The present study revealed that targeted deep sequencing can reliably detect mutational variants within bile cfDNA obtained from BTC patients. These preliminary results may shed light on bile cfDNA as a promising liquid biopsy for BTC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.