NOTCH1 mutations have been reported to occur in 10 to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation and mutation analyses. Copy number increases were identified in NOTCH pathway genes including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4/37 of the tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptors mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.
Rhabdomyosarcoma comprises two major subtypes, fusion positive (PAX3-FOXO1 or PAX7-FOXO1) and fusion negative. To investigate the significance of DNA methylation in these subtypes, we analyzed methylation profiles of 37 rhabdomyosarcoma tumors and 10 rhabdomyosarcoma cell lines, as well as 8 normal tissues. Unsupervised clustering of DNA methylation clearly distinguished the fusion-positive and fusion-negative subsets. The fusion-positive tumors showed substantially lower overall levels of methylation compared with fusion-negative tumors. Comparison with the methylation pattern of normal skeletal muscle and bone marrow indicates that fusion-negative rhabdomyosarcoma is more similar to these normal tissues compared with fusionpositive rhabdomyosarcoma, and suggests that many of the methylation differences between these subtypes arise from 'aberrant' hyper-and hypomethylation events in fusion-positive rhabdomyosarcoma. Integrative methylation and gene expression analysis revealed that methylation differences between fusion-positive and fusion-negative tumors could either be positively or negatively associated with mRNA expression. There was no significant difference in the distribution of PAX3-FOXO1-binding sites between genes with and without differential methylation. However, the finding that PAX3-FOXO1-binding sites were enriched among genes that were both differentially methylated and differentially expressed suggests that the fusion protein interacts with DNA methylation to regulate target gene expression. An 11-gene DNA methylation signature, classifying the rhabdomyosarcoma tumors into fusion-positive and fusion-negative subsets, was established and validated by pyrosequencing assays. Notably, EMILIN1 (part of the 11-gene signature) showed higher methylation and lower mRNA expression in fusion-positive compared with fusion-negative tumors, and demonstrated demethylation and re-expression in multiple fusion-positive cell lines after treatment with 5-aza-2′-deoxycytidine. In conclusion, our study demonstrates that fusion-positive and fusion-negative rhabdomyosarcoma tumors possess characteristic methylation profiles that contribute to the expression differences between these fusion subtypes. These findings indicate an important relationship between fusion status and epigenetic changes in rhabdomyosarcoma, present a novel approach for ascertaining fusion status, and may identify new therapeutic targets in rhabdomyosarcoma. The pediatric soft tissue cancer rhabdomyosarcoma has been traditionally classified by histology into two major subtypes, alveolar (~30%) and embryonal (~70%). Most alveolar rhabdomyosarcoma cases (~80%) have chromosomal translocations that join the DNA-binding domain of PAX3 or PAX7 to the transactivation domain of FOXO1. The PAX3-FOXO1 and PAX7-FOXO1 fusions (henceforth referred to as PAX3/7-FOXO1) encode potent transcription factors that contribute to tumorigenesis by altering growth and apoptotic pathways, modulating myogenic differentiation, and stimulating metastatic pathways. 1,2 Seve...
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Purpose Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3- or PAX7-FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13-q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS. Experimental Procedures We examined the biological consequences of CDK4 knockdown, CDK4 overexpression, and pharmacologic CDK4/6 inhibition by LEE011 in fusion-positive RMS cell lines and xenografts. Results Knockdown of CDK4 abrogated proliferation and transformation of 12q13-14-amplified and non-amplified fusion-positive RMS cells via G1-phase cell cycle arrest. This arrest was mediated by reduced RB phosphorylation and E2F-responsive gene expression. Significant differences in E2F target expression, cell cycle distribution, proliferation, or transformation were not observed in RMS cells overexpressing CDK4. Treatment with LEE011 phenocopied CDK4 knockdown, decreasing viability, RB phosphorylation, and E2F-responsive gene expression and inducing G1-phase cell cycle arrest. Though all fusion-positive cell lines showed sensitivity to CDK4/6 inhibition, there was diminished sensitivity associated with CDK4 amplification and overexpression. This variable responsiveness to LEE011 was recapitulated in xenograft models of CDK4-amplified and non-amplified fusion-positive RMS. Conclusions Our data demonstrate that CDK4 is necessary but overexpression is not sufficient for RB-E2F-mediated G1-phase cell cycle progression, proliferation, and transformation in fusion-positive RMS. Our studies indicate that LEE011 is active in the setting of fusion-positive RMS and suggest that low CDK4-expressing fusion-positive tumors may be particularly susceptible to CDK4/6 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.