Atmospheric particulate matter (PM) deposition which involves both dry and wet processes is an important means of controlling air pollution. To investigate the characteristics of dry and wet deposition in wetlands, PM concentrations and meteorological conditions were monitored during summer at heights of 1.5 m, 6 m and 10 m above ground level at Cuihu Wetland (Beijing, China) in order to assess the efficiency of PM2.5 (particles with an aerodynamic size of <2.5 μm) and PM10 (particles with an aerodynamic size of <10 μm) removal. The results showed: Daily concentrations of PM, dry deposition velocities and fluxes changed with the same variation trend. The daily average deposition velocity for PM10 (3.19 ± 1.18 cm·s–1) was almost 10 times that of PM2.5 (0.32 ± 0.33 cm·s–1). For PM2.5, the following dry deposition fluxes were recorded: 10 m (0.170 ± 0.463 μg·m–2·s–1) > 6 m (0.007 ± 0.003 μg·m–2·s–1) > 1.5 m (0.005 ± 0.002 μg·m–2·s–1). And the following deposition fluxes for PM10 were recorded: 10 m (2.163 ± 2.941 μg·m–2·s–1) > 1.5 m (1.565 ± 0.872 μg·m–2·s–1) > 6 m (0.987 ± 0.595 μg·m–2·s–1). In the case of wet deposition, the relative deposition fluxes for PM2.5 and PM10 were 1.5 m > 10 m > 6 m, i.e. there was very little difference between the fluxes for PM2.5 (0.688 ± 0.069 μg·m–2·s–1) and for PM10 (0.904 ± 0.103 μg·m–2·s–1). It was also noted that rainfall intensity and PM diameter influenced wet deposition efficiency. Dry deposition (63%) was more tilted towards removing PM10 than was the case for wet deposition (37%). In terms of PM2.5 removal, wet deposition (92%) was found to be more efficient.
H3+xPMo12−xVxO40@MIL-100 (Fe) (x = 0, 1, 2) hybrids were prepared by encapsulation of polyoxometalates (POMs) within the metal–organic framework using a direct hydrothermal method.
Thrombosis and infections are the main causes of implant failures (e.g., extracorporeal circuits and indwelling medical devices), which induce significant morbidity and mortality. In this work, an endothelium‐mimicking surface is engineered, which combines the nitric oxide (NO)‐generating property and anti‐fouling function of a healthy endothelium. The released gas signal molecules NO and the glycocalyx matrix macromolecules hyaluronic acid (HA) jointly combine long‐ and short‐distance defense actions against thrombogenicity and biofouling. The biomimetic surface is efficiently fabricated by cografting a NO‐generating species (i.e., Tri‐tert‐butyl 1,4,7,10‐Tetraazacyclododecane‐1,4,7,10‐tetraacetate‐chelated Cu2+, DTris@Cu) and the macromolecular HA on an aminated tube surface through one‐pot amide condensation chemistry. The active attack (i.e., NO release) and zone defense (i.e., HA tethering) system endow the tubing surface with significant inhibition of platelets, fibrinogen, and bacteria adhesion, finally leading to long‐term anti‐thrombogenic and anti‐fouling properties over 1 month. It is envisioned that this endothelium‐mimicking surface engineering strategy will provide a promising solution to address the clinical issues of long‐term blood‐contacting devices associated with thrombosis and infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.