Previous studies in multimodal sentiment analysis have used limited datasets, which only contain unified multimodal annotations. However, the unified annotations do not always reflect the independent sentiment of single modalities and limit the model to capture the difference between modalities. In this paper, we introduce a Chinese single-and multimodal sentiment analysis dataset, CH-SIMS, which contains 2,281 refined video segments in the wild with both multimodal and independent unimodal annotations. It allows researchers to study the interaction between modalities or use independent unimodal annotations for unimodal sentiment analysis. Furthermore, we propose a multi-task learning framework based on late fusion as the baseline. Extensive experiments on the CH-SIMS show that our methods achieve state-of-the-art performance and learn more distinctive unimodal representations. The full dataset and codes are available for use at https://github.com/ thuiar/MMSA.
Representation Learning is a significant and challenging task in multimodal learning. Effective modality representations should contain two parts of characteristics: the consistency and the difference. Due to the unified multimodal annota- tion, existing methods are restricted in capturing differenti- ated information. However, additional unimodal annotations are high time- and labor-cost. In this paper, we design a la- bel generation module based on the self-supervised learning strategy to acquire independent unimodal supervisions. Then, joint training the multimodal and uni-modal tasks to learn the consistency and difference, respectively. Moreover, dur- ing the training stage, we design a weight-adjustment strat- egy to balance the learning progress among different sub- tasks. That is to guide the subtasks to focus on samples with the larger difference between modality supervisions. Last, we conduct extensive experiments on three public multimodal baseline datasets. The experimental results validate the re- liability and stability of auto-generated unimodal supervi- sions. On MOSI and MOSEI datasets, our method surpasses the current state-of-the-art methods. On the SIMS dataset, our method achieves comparable performance than human- annotated unimodal labels. The full codes are available at https://github.com/thuiar/Self-MM.
Representation Learning is a significant and challenging task in multimodal learning. Effective modality representations should contain two parts of characteristics: the consistency and the difference. Due to the unified multimodal annotation, existing methods are restricted in capturing differentiated information. However, additional uni-modal annotations are high time-and labor-cost. In this paper, we design a label generation module based on the self-supervised learning strategy to acquire independent unimodal supervisions. Then, joint training the multi-modal and uni-modal tasks to learn the consistency and difference, respectively. Moreover, during the training stage, we design a weight-adjustment strategy to balance the learning progress among different subtasks. That is to guide the subtasks to focus on samples with a larger difference between modality supervisions. Last, we conduct extensive experiments on three public multimodal baseline datasets. The experimental results validate the reliability and stability of auto-generated unimodal supervisions. On MOSI and MOSEI datasets, our method surpasses the current state-of-the-art methods. On the SIMS dataset, our method achieves comparable performance than humanannotated unimodal labels. The full codes are available at https://github.com/thuiar/Self-MM.
Improving robustness against data missing has become one of the core challenges in Multimodal Sentiment Analysis (MSA), which aims to judge speaker sentiments from the language, visual, and acoustic signals. In the current research, translation-based methods and tensor regularization methods are proposed for MSA with incomplete modality features. However, both of them fail to cope with random modality feature missing in non-aligned sequences. In this paper, a transformer-based feature reconstruction network (TFR-Net) is proposed to improve the robustness of models for the random missing in non-aligned modality sequences. First, intramodal and inter-modal attention-based extractors are adopted to learn robust representations for each element in modality sequences. Then, a reconstruction module is proposed to generate the missing modality features. With the supervision of SmoothL1Loss between generated and complete sequences, TFR-Net is expected to learn semantic-level features corresponding to missing features. Extensive experiments on two public benchmark datasets show that our model achieves good results against data missing across various missing modality combinations and various missing degrees. CCS CONCEPTS• Information systems → Multimedia and multimodal retrieval; Web log analysis; Web applications; • Computing methodologies → Natural language processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.