In this work, TiN‐based cermets with excellent performance and uniform microstructure were successfully manufactured by conventional vacuum sintering with 0‐5 wt% carbon addition at 1500°C. Influence of carbon addition on the microstructure and mechanical properties of cermets was investigated by scanning electron microscope, transmission electron microscope, X‐Ray diffraction, electron probe microanalysis, and mechanical tests. The results showed that small amount of carbon helped to improve significantly the wettability between TiN and Ni/Co, leading to well‐distributed structure and perfect core‐rim phases. As the carbon content increased from 0 to 5 wt%, mechanical properties of cermets increased initially, displayed a maximum and then decreased. For the experimental conditions considered, the cermets with 3 wt% carbon addition revealed best mechanical properties. The relative density, the transverse rupture strength, fracture toughness, and Rockwell hardness of the cermets were 99.78%, 1836 MPa, 14.7 MPa m1/2, and 88, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.