C–N
cross-coupling is one of the most valuable and widespread
transformations in organic synthesis. Largely dominated by Pd- and
Cu-based catalytic systems, it has proven to be a staple transformation
for those in both academia and industry. The current study presents
the development and mechanistic understanding of an electrochemically
driven, Ni-catalyzed method for achieving this reaction of high strategic
importance. Through a series of electrochemical, computational, kinetic,
and empirical experiments, the key mechanistic features of this reaction
have been unraveled, leading to a second generation set of conditions
that is applicable to a broad range of aryl halides and amine nucleophiles
including complex examples on oligopeptides, medicinally relevant
heterocycles, natural products, and sugars. Full disclosure of the
current limitations and procedures for both batch and flow scale-ups
(100 g) are also described.
Rational introduction of electrocatalytically-active nanocrystals into carbon–sulfur enables the accelerated kinetics of sulfur redox reactions, thus achieving an ultra-high-rate and long-life Li–S battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.