The Wigner's theorem, which is one of the cornerstones of the mathematical formulation of quantum mechanics, asserts that every symmetry of quantum system is unitary or anti-unitary. This classical result was first given by Wigner in 1931. Thereafter it has been proved and generalized in various ways by many authors. Recently, G. P. Gehér extended Wigner's and Molnár's theorems and characterized the transformations on the Grassmann space of all rank-n projections which preserve the transition probability. The aim of this paper is to provide a new approach to describe the general form of the transition probability preserving (not necessarily bijective) maps between Grassmann spaces. As a byproduct, we are able to generalize the results of Molnár and G. P. Gehér.
We study the reflexivity and transitivity of a double triangle lattice of subspaces in a Hilbert space. We show that the double triangle lattice is neither reflexive nor transitive when some invertibility condition is satisfied (by the restriction of a projection under another). In this case, we show that the reflexive lattice determined by the double triangle lattice contains infinitely many projections, which partially answers a problem of Halmos on small lattices of subspaces in Hilbert spaces.2010 Mathematics subject classification: primary 47A62; secondary 47L75.
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann algebras are clean as rings? In this paper, we characterize strongly clean von Neumann algebras and prove that all finite von Neumann algebras and all separable infinite factors are clean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.