Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and hierarchical porosity with well-conducting networks. The promising potential of NGPCs as metal-free electrocatalysts for oxygen reduction reactions (ORR) in fuel cells is demonstrated. Compared with commercial Pt/C, the optimized NGPC-1000-10 (carbonized at 1000 C for 10 h) catalyst exhibits comparable electrocatalytic activity via an efficient four-electron-dominant ORR process coupled with superior methanol tolerance as well as cycling stability in alkaline media. Furthermore, the controlled experiments reveal that the optimum activity of NGPC-1000-10 can be attributed to the synergetic contributions of the abundant active sites with high graphitic-N portion, high surface area and porosity, and the high degree of graphitization. Our findings suggest that solely MOF-derived heteroatom-doped carbon materials can be a promising alternative for Pt-based catalysts in fuel cells.
In the present work, we have designed and synthesized a new highly durable iron phtalocyanine based nonprecious oxygen reduction reaction (ORR) catalyst (Fe-SPc) for polymer electrolyte membrane fuel cells (PEMFCs). The Fe-SPc, with a novel structure inspired by that of naturally occurring oxygen activation catalysts, is prepared by a nonpyrolyzing method, allowing adequate control of the atomic structure and surface properties of the material. Significantly improved ORR stability of the Fe-SPc is observed compared with the commercial Fe-Pc catalysts. The Fe-SPc has similar activity to that of the commercial Fe-Pc initially, while the Fe-SPc displays 4.6 times higher current density than that of the commercial Fe-Pc after 10 sweep potential cycles, and a current density that is 7.4 times higher after 100 cycles. This has been attributed to the incorporation of electron-donating functional groups, along with a high degree of steric hindrance maintaining active site isolation. Nonprecious Fe-SPc is promising as a potential alternative ORR electrocatalyst for PEMFCs.
Fe-based oxygen reduction reaction (ORR) catalyst materials
are
considered promising nonprecious alternatives to traditional platinum-based
catalysts. These catalyst materials are generally produced by high-temperature
pyrolysis treatments of readily available carbon, nitrogen, and iron
sources. Adequate control of the structure and active site formation
during pyrolysis methods is nearly impossible. Thus, the chemical
nature, structure, and ORR mechanism of catalytically active sites
in these materials is a subject of significant debate. We have proposed
a method, utilizing CN– ions as ORR inhibitors on
Fe-based catalysts, to provide insight into the exact nature and chemistry
of the catalytically active sites. Moreover, we propose two possible
catalytically active site formation mechanisms occurring during high-temperature
pyrolysis treatments, dependent on the specific type of precursor
and synthesis methods utilized. We have further provided direct evidence
of our proposed active site formations using ToF-SIMS negative and
positive ion imaging. This knowledge will be beneficial to future
work directed at the development of Fe-based catalysts with improved
ORR activity and operational stabilities for fuel cell and battery
applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.