The Kmeans clustering and spectral clustering are two popular clustering methods for grouping similar data points together according to their similarities. However, the performance of Kmeans clustering might be quite unstable due to the random initialization of the cluster centroids. Generally, spectral clustering methods employ a two-step strategy of spectral embedding and discretization postprocessing to obtain the cluster assignment, which easily lead to far deviation from true discrete solution during the postprocessing process. In this paper, based on the connection between the Kmeans clustering and spectral clustering, we propose a new Kmeans formulation by joint spectral embedding and spectral rotation which is an effective postprocessing approach to perform the discretization, termed KMSR. Further, instead of directly using the dot-product data similarity measure, we make generalization on KMSR by incorporating more advanced data similarity measures and call this generalized model as KMSR-G. An efficient optimization method is derived to solve the KMSR (KMSR-G) model objective whose complexity and convergence are provided. We conduct experiments on extensive benchmark datasets to validate the performance of our proposed models and the experimental results demonstrate that our models perform better than the related methods in most cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.