Icariin, the main active compound of the traditional Chinese medicine, Epimedium, is commonly used for the clinical treatment of osteoporosis. However, the precise molecular mechanism of the therapeutic effect of icariin has not been elucidated. The aim of this study was to examine the effect of icariin on cell viability, alkaline phosphatase (ALP) activity, the amount of calcified nodules, and to delineate the molecular mechanism of icariin-enhanced bone formation by investigating the expression of bone morphogenic protein-2 (BMP-2), Smad4, Cbfa1/Runx2, osteoprotegerin (OPG), receptor activator of nuclear factor κ-B ligand (RANKL) and the OPG/RANKL ratio in the hFOB 1.19 human osteoblastic cell line. We found that icariin significantly increased the cell viability, the activity of ALP and the amount of calcified nodules in the hFOB 1.19 cells. Furthermore, we observed that icariin upregulated the expression of BMP-2, Smad4, Cbfa1/Runx2, OPG, RANKL and the OPG/RANKL ratio. Our results indicate that icariin can modulate the process of bone formation via the BMP-2/Smad4 signal transduction pathway in hFOB 1.19 cells.
Objective Increasing evidence demonstrates that oxidative stress and inflammatory are involved in amyloid β (Aβ)-induced memory impairments. Ursolic acid (UA), a triterpenoid compound, has potent anti-inflammatory and antioxidant activities. However, it remains unclear whether UA attenuates Aβ-induced neurotoxicity. Method The aggregated Aβ25-35 was intracerebroventricularly administered to mice. Results We found that UA significantly reversed the Aβ25-35-induced learning and memory deficits. Our results indicated that one of the potential mechanisms of the neuroprotective effect was attenuating the Aβ25-35-induced accumulation of malondialdehyde (MDA) and depletion of glutathione (GSH) in the hippocampus. Furthermore, UA significantly suppressed the upregulation of IL-1β, IL-6, and tumor necrosis-α factor levels in the hippocampus of Aβ25-35-treated mice. Conclusion These findings suggest that UA prevents memory impairment through amelioration of oxidative stress, inflammatory response and may offer a novel therapeutic strategy for the treatment of Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.