Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-InSe ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, InSe exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric InSe, a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.
Tuning surface strain is a powerful strategy for tailoring the reactivity of metal catalysts. Traditionally, surface strain is imposed by external stress from a heterogeneous substrate, but the effect is often obscured by interfacial reconstructions and nanocatalyst geometries. Here, we report on a strategy to resolve these problems by exploiting intrinsic surface stresses in two-dimensional transition metal nanosheets. Density functional theory calculations indicate that attractive interactions between surface atoms lead to tensile surface stresses that exert a pressure on the order of 105atmospheres on the surface atoms and impart up to 10% compressive strain, with the exact magnitude inversely proportional to the nanosheet thickness. Atomic-level control of thickness thus enables generation and fine-tuning of intrinsic strain to optimize catalytic reactivity, which was confirmed experimentally on Pd(110) nanosheets for the oxygen reduction and hydrogen evolution reactions, with activity enhancements that were more than an order of magnitude greater than those of their nanoparticle counterparts.
Hydrogen holds the potential of replacing nonrenewable fossil fuel. Improving the efficiency of hydrogen evolution reaction (HER) is critical for environmental friendly hydrogen generation through electrochemical or photoelectrochemical water splitting. Here we report the surface-engineered PtNi-O nanoparticles with enriched NiO/PtNi interface on surface. Notably, PtNi-O/C showed a mass activity of 7.23 mA/μg at an overpotential of 70 mV, which is 7.9 times higher compared to that of the commercial Pt/C, representing the highest reported mass activity for HER in alkaline conditions. The HER overpotential can be lowered to 39.8 mV at 10 mA/cm when platinum loading was only 5.1 μg/cm, showing exceptional HER efficiency. Meanwhile, the prepared PtNi-O/C nanostructures demonstrated significantly improved stability as well as high current performance which are well over those of the commercial Pt/C and demonstrated capability of scaled hydrogen generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.