Water huff and puff in horizontal wells in tight reservoirs has achieved good results in replenishing formation energy. However, after multiple rounds of treatment, a rapid decrease in formation pressure takes place making it difficult to maintain stable production. To improve the oil recovery rate of tight reservoirs, it is imminent to change the development mode. In this work, the stress distribution characteristics at fracture tips were analyzed based on Irwin theory and elastic theory. A model of propagation and closure length of fractures was established based on the propagation mechanism of water injection-induced natural fracture and the energy balance principle of fracture mechanics. Surfactant imbibition experiments were carried out according to the imbibition principle of surfactant system, and the propagation law of natural fractures was described with numerical simulation to analyze the seepage characteristics of dynamic fracture network. On the basis of the above works, alternating water huff and puff into segmented injection and production was proposed according to the distribution law of dynamic fracture network. The developing process of an actual well case by these two developing modes was simulated to predict 18 years of cumulative recovery, pressure distribution, and recovery rate. Results showed that when stress intensity factor exceeds the fracture toughness, the natural fractures will extend along their original directions and get connected, forming an irregular fracture network. The lengths of fractures after propagation and closure will not bring about water channeling for they are far shorter than well and interval spacing. Surfactant could diminish the resistance of boundary layer by reducing the wetting contact angle, ending up with an improvement in imbibition efficiency. Radial displacement and dynamic imbibition occur simultaneously in a dynamic fracture network during the early stage of water injection, while static imbibition mainly occurs during injection shutdown period and well soaking. According to comparison, the swept area of segmented injection and production was larger, ending up with a continuous increase of simulated recovery rate and cumulative recovery. The findings of this study show alternating water huff and puff after to segmented injection and production in fractured tight reservoir can allow full play of dynamic fracture network’s potential and achieve effective enhancement in oil recovery rate.
The understanding of formation has always been a challenge for field development. In this paper, we evaluate the reservoir parameters and gas well productivity based on production data. The model of nonuniform conductivity of fractures in multistage fracturing horizontal wells (MFHW) is used to interpret the transient pressure data. Binomial and exponential deliverability equations and pressure dimensionless productivity formula are combined to evaluate the gas well productivity. After that, the key factors that influence gas well production are analyzed, and the gas rate vs. oil nozzle is presented. Results show that the fracture half-length and conductivity for high- and low-conductivity fractures, respectively, are obtained, apart from the reservoir pressure, permeability, skin factor, etc. The test time in each oil nozzle is recommended to extend to achieve stability and to obtain a more accurate absolute open flow potential. The findings of this study provides a guidance for the production data analysis of nonuniform conductivity of fractures in MFHW in the future work. And it can help for the better understanding of predicting gas production rates in MFHW.
Gas reservoirs discovered in the southern margin of the Junggar Basin generally have high temperatures (up to 172.22 °C) and high pressures (up to 171.74 MPa). If using the PVT laboratory to get the gas compressibility factor, data from the laboratory are so little that it will not satisfy the demands of reservoir engineering calculations. There are many empirical correlations for calculating the Z-factor; however, these correlations give large errors at high gas reservoir pressures. The errors in estimating the Z-factor will lead to large errors in estimating all the other gas properties such as gas formation volume factor, gas compressibility, and gas in place. In this paper, a new accurate Z-factor correlation has been developed based on PVT data by correcting the high-pressure part of the most commonly used Dranchuk-Purvis-Robinson Correlation. Multivariate nonlinear regression is used to establish the independent variable function of pseudo-critical temperatures and pressures. By comparing it with the PVT data, the DPR correlation is continuously corrected to be suitable for ultra-deep gas reservoirs with HTHP. The new correlation can be used to determine the Z-factor at any pressure range, especially for high pressures, and the error is less than 1% compared to the PVT data. Then, based on the corrected Z-factor, the Cullender-Smith method is used to calculate the bottom hole pressure in the middle of the reservoir. Finally, the Z-factor under reservoir conditions of well H2 is predicted and the Z-factor chart at different temperatures is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.