In the long-term evolutionary process, Achnatherum inebrians and seed-borne endophytic fungi, Epichloë gansuensis, formed a mutually beneficial symbiosis relationship, and Epichloë gansuensis has an important biological role in improving the tolerance of host grasses to abiotic stress. In this work, we first assessed the effects of Epichloë gansuensis on dry weight, the content of C, N, P and metal ions, and metabolic pathway of amino acids, and phosphorus utilization efficiency (PUE) of Achnatherum inebrians at low P stress. Our results showed that the dry weights, the content of alanine, arginine, aspartic acid, glycine, glutamine, glutamic acid, L-asparagine, lysine, phenylalanine, proline, serine, threonine, and tryptophan were higher in leaves of Epichloë gansuensis-infected (E+) Achnatherum inebrians than Epichloë gansuensis-uninfected (E−) Achnatherum inebrians at low P stress. Further, Epichloë gansuensis increased C content of roots compared to the root of E− plant at 0.01 mM P and 0.5 mM P; Epichloë gansuensis increased K content of leaves compared to the leaf of E− plant at 0.01 mM P and 0.5 mM P. Epichloë gansuensis reduced Ca content of roots compared to the root of E− plant at 0.01 mM P and 0.5 mM P; Epichloë gansuensis reduced the content of Mg and Fe in leaves compared to the leaf of E− plant at 0.01 mM P and 0.5 mM P. In addition, at low P stress, Epichloë gansuensis most probably influenced aspartate and glutamate metabolism; valine, leucine, and isoleucine biosynthesis in leaves; and arginine and proline metabolism; alanine, aspartate, and glutamate metabolism in roots. Epichloë gansuensis also affected the content of organic acid and stress-related metabolites at low P stress. In conclusion, Epichloë gansuensis improves Achnatherum inebrians growth at low P stress by regulating the metabolic pathway of amino acids, amino acids content, organic acid content, and increasing PUE.
The past decade has witnessed significant advances in understanding the interaction between grasses and systemic fungal endophytes of the genus Epichloë, with evidence that plants have evolved multiple strategies to cope with abiotic stresses by reprogramming physiological responses. Soil nutrients directly affect plant growth, while soil microbes are also closely connected to plant growth and health. Epichloë endophytes could affect soil fertility by modifying soil nutrient contents and soil microbial diversity. Therefore, we analyze recent advances in our understanding of the role of Epichloë endophytes under the various abiotic stresses and the role of grass–Epichloë symbiosis on soil fertility. Various cool-season grasses are infected by Epichloë species, which contribute to health, growth, persistence, and seed survival of host grasses by regulating key systems, including photosynthesis, osmotic regulation, and antioxidants and activity of key enzymes of host physiology processes under abiotic stresses. The Epichloë endophyte offers significant prospects to magnify the crop yield, plant resistance, and food safety in ecological systems by modulating soil physiochemical properties and soil microbes. The enhancing resistance of host grasses to abiotic stresses by an Epichloë endophyte is a complex manifestation of different physiological and biochemical events through regulating soil properties and soil microbes by the fungal endophyte. The Epichloë-mediated mechanisms underlying regulation of abiotic stress responses are involved in osmotic adjustment, antioxidant machinery, photosynthetic system, and activity of key enzymes critical in developing plant adaptation strategies to abiotic stress. Therefore, the Epichloë endophytes are an attractive choice in increasing resistance of plants to abiotic stresses and are also a good candidate for improving soil fertility and regulating microbial diversity to improve plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.