Nanostructuring of magnetically hard and soft materials is fascinating for exploring next-generation ultrastrong permanent magnets with less expensive rare-earth elements. However, the resulting hard/soft nanocomposites often exhibit random crystallographic orientations and monomorphological equiaxed grains, leading to inferior magnetic performances compared to corresponding pure rare-earth magnets. This study describes the first fabrication of a novel bimorphological anisotropic bulk nanocomposite using a multistep deformation approach, which consists of oriented hard-phase SmCo rod-shaped grains and soft-phase Fe(Co) equiaxed grains with a high fraction (≈28 wt%) and small size (≈10 nm). The nanocomposite exhibits a record-high energy product (28 MGOe) for this class of bulk materials with less rare-earth elements and outperforms, for the first time, the corresponding pure rare-earth magnet with 58% enhancement in energy product. These findings open up the door to moving from a pure permanent-magnet system to a stronger nanocomposite system at lower costs.
Hybrid nanostructures that comprise two or more nanoscale functional components are fascinating for applications in electronics, energy conversion devices, and biotechnologies. Their performances are strongly dependent on the characteristics of the individual components including the size, morphology, orientation, and distribution. However, it remains challenging to simultaneously control these structural properties in a three-dimensional (3D) hybrid nanostructure. Here, we introduce a robust strategy for concurrently manipulating these characteristics in a bulk SmCo/Fe(Co) nanocomposite. This method can tune nanocrystals in size (down to sub-10 nm), morphology (sphere, rod, or disc), and crystallographic orientation (isotropic or anisotropic). We have therefore achieved the desired nanostructures: oriented hard magnetic SmCo grains and homogeneously distributed soft magnetic Fe(Co) grains with high fractions (∼26 wt %) and small sizes (∼12.5 nm). The resulting anisotropic nanocomposite exhibits an energy product that is approximately 50% greater than that of its corresponding pure SmCo magnet and 35% higher than the reported largest value in isotropic SmCo/Fe(Co) systems. Our findings pave a new way to manipulating 3D hybrid nanostructures in a controllable manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.