The objective of this study was to analyze the value of artificial intelligence algorithm-based computerized tomography (CT) image combined with serum tumor markers for diagnoses of pancreatic cancer. In the study, 68 hospitalized patients with pancreatic cancer were selected as the experimental group, and 68 hospitalized patients with chronic pancreatitis were selected as the control group, all underwent CT imaging. An image segmentation algorithm on account of two-dimensional (2D)-three-dimensional (3D) convolution neural network (CNN) was proposed. It also introduced full convolutional network (FCN) and UNet network algorithm. The diagnostic performance of CT, serum carbohydrate antigen-50 (CA-50), serum carbohydrate antigen-199 (CA-199), serum carbohydrate antigen-242 (CA-242), combined detection of tumor markers, and CT-combined tumor marker testing (CT-STUM) for pancreatic cancer were compared and analyzed. The results showed that the average Dice coefficient of 2D-3D training was 84.27%, which was higher than that of 2D and 3D CNNs. During the test, the maximum and average Dice coefficient of the 2D-3D CNN algorithm was 90.75% and 84.32%, respectively, which were higher than the other two algorithms, and the differences were statistically significant ( P < 0.05 ). The penetration ratio of pancreatic duct in the experimental group was lower than that in the control group, the rest were higher than that in the control group, and the differences were statistically significant ( P < 0.05 ). CA-50, CA-199, and CA-242 in the experimental group were 141.72 U/mL, 1548.24 U/mL, and 83.65 U/mL, respectively, which were higher than those in the control group, and the differences were statistically significant ( P < 0.05 ). The sensitivity, specificity, positive predictive value, and authenticity of combined detection of serum tumor markers were higher than those of CA-50, CA-199, and CA-242, and the differences were statistically significant ( P < 0.05 ). The results showed that the proposed algorithm 2D-3D CNN had good stability and image segmentation performance. CT-STUM had high sensitivity and specificity in diagnoses of pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.