SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.
CdSeS quantum dots (QDs) are firstly introduced into a NiO photocathode for photocathodic dye‐sensitized solar cells (p‐DSCs). The optimized sample exhibits a short‐circuit density (14.68 mA cm−2) and power conversion efficiency (1.02%) that are almost one order of magnitude higher than the reported value of p‐QDSCs. Steady‐state photoluminescence and time‐resolved photoluminescence measurements indicate that the photoexcited holes can be almost completely injected from CdSeS QDs into the valence band of NiO. At the same time, it can be observed from electrochemical impedance spectra measurements.
In this study, a uniform nanoporous NiO film, with a thickness of up to 2.6 μm, was prepared using polyethylene glycol (PEG). The addition of PEG significantly decreased the cracks in the NiO film and prevented the peeling of the NiO film from a fluorine-doped tin oxide substrate. The NiO cathode was prepared using CdSeS quantum dots (QDs) as the sensitizer, with an optimized photoelectric conversion of 0.80%. The optimized QD-sensitized NiO films were first assembled with the TiO2 anode to prepared QD-sensitized p–n-type tandem solar cells. The open circuit voltage was greater than that obtained using the separated NiO cathode or TiO2 anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.