The Himalayan, Karakoram, and Hindu Kush (HKH-TMHA) are the three main mountain ranges in the high-mountain Asia region, covering the China–Pakistan Economic Corridor (CPEC). In this study, we identified glacial lakes in the HKH-TMHA region based on multitemporal Landsat images taken from 1990 to 2020. We analyzed the spatial distribution and evolution of glacial lakes in the HKH-TMHA region from the perspective of their elevation, size, and terrain aspect; then, we described their temporal changes. The results showed that approximately 84.56% of the glacial lakes (84.1% of the total lake area) were located at elevations between 4000 m and 5500 m, and glacial lakes with areas ranging from 0.01–0.5 km2 accounted for approximately 95.21% of the number and 63.01% of the total area of glacial lakes. The number (38.64%) and area (58.83%) of south-facing glacial lakes were largest in HKH-TMHA and expanded significantly over time. There were 5835 (664.84 ± 89.72 km2) glacial lakes in 1990; from 1990 to 2020, the number of glacial lakes in the HKH-TMHA region increased by 5974 (408.93 km2) in total; and the annual average increase in the area of glacial lakes reached 13.63 km2 (11.15%). In 2020, the total number of glacial lake reached to 9673 (899.66 ± 120.63 km2). In addition, most glacial lakes were located in the Eastern Himalayan, China, and the Indus Basin. Based on the precipitation and temperature analyses performed in our study area, we found inconsistent climate characteristics and changes in the three mountain ranges. In general, the daily precipitation (temperature) increased by 1.0766 mm (1.0311 °C), 0.8544 mm (0.8346 °C), and 0.8245 mm (−0.1042 °C) on the yearly, summer, and winter scales, respectively. Glacial melting and climate change are common contributors to glacial lake expansion. The investigation of glacial lakes in this region can provide basic supporting data for research on glacial lake-related disasters, land cover, and climate change in the high-mountain Asia region.
The China–Pakistan Economic Corridor is the pilot area of the Belt and Road, where glaciers and lakes are widely distributed. Recent years, global warming has accelerated the expansion of glacier lakes, which increased the risk of natural disasters such as glacier lake outburst. It is important to monitor the glacier lakes in this region. In this paper, we propose a method combining the object-oriented image analysis with boundary recognition (OOBR) to extract lakes in several study areas of China–Pakistan Economic Corridor (CPEC). This method recognized the lake boundary with the symmetrical characteristic according to the principle of seed growth of watershed algorithm, which can correct the boundary extracted by the object-oriented method. The overall accuracy of the proposed method is up to 98.5% with Landsat series images. The experiments also show that the overall accuracy of our method is always higher than that of the object-oriented method with different segmentation scales mentioned in this paper. The proposed method improved the overall accuracy on the basis of the results obtained by the object-oriented method, and the results with the proposed method are more robust to the seeds than that with the boundary correction method of the watershed algorithm. Therefore, the proposed method can obtain a high extraction accuracy while reducing the complexity of the object-oriented extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.