Spinal cord injury (SCI) is a severe neurological disease. An effective strategy for the treatment of SCI is urgently required. Stem cell transplantation has emerged as a viable therapeutic option with great potential for restoring neurological function lost following SCI. From 2009 to 2010, a total of 20 SCI patients were enrolled in a clinical trial by Wuhan Hongqiao Brain Hospital; all patients completed and signed informed consent prior to autologous bone marrow-derived mesenchymal stem cell transplantation. Analysis of subsequent treatment results indicated significant improvements in sensory, motor and autonomic nerve function as assessed by the American Spinal Injury Association’s impairment scale. Thirty days after transplantation, a total of 15 patients (75%) demonstrated improvement, including four of the eight patients (50%) with grade A SCI, three of the four patients (75%) with grade B injury and all eight patients (100%) with grade C injury. The most common adverse events, fever and headache, disappeared within 24–48 h without treatment.
Cisplatin has been hypothesized to induce nephrotoxicity through triggering the apoptosis of tubular cells; however, the drug remains widely administered for the treatment of tumors. Recently, mesenchymal stem cells (MSCs) have been demonstrated to protect the kidney from the adverse effects induced by cisplatin. The aim of the present study was to investigate the mechanisms underlying the protective effects of human adipose-derived MSCs (AD-MSCs) on kidney function and tubular cells. Sprague-Dawley rats were divided into three groups, which included the healthy controls, those subjected to cisplatin-induced acute kidney injury (AKI) for 24 h without subsequent treatment and those subjected to cisplatin-induced AKI for 24 h, followed by AD-MSC engraftment. The rats were sacrificed at day 5 and the effects were analyzed using various methods, including biochemical analysis, structural examination and cell tracking experiments. In addition, an experiment with NRK-52E cells was performed. The cells were divided into three groups, including the healthy control, cisplatin induction and cisplatin induction with co-culture of AD-MSCs, and were subsequently assessed with a Transwell assay. After culture for four days, the cells were lysed and the total protein extract was subjected to western blot analysis. Cisplatin-induced renal dysfunction and tissue damage was shown to recover following AD-MSC infusion, although there were few AD-MSCs observed around the injured kidney tubules in the kidney. When the cisplatin-treated NRK-52E cells were co-cultured with AD-MSCs, the activation of p38 and BAX were inhibited, while the expression of Bcl-2 was upregulated, as compared with the cisplatin-treated NRK-52E cells that were not co-cultured. Therefore, AD-MSCs were shown to markedly improve cisplatin-induced renal failure and tubular cells necrosis through the secretion of certain factors, which subsequently inhibited the apoptosis pathway. It was hypothesized that AD-MSC secretion was triggered by the injured tubular cells. Thus, AD-MSCs may be important for the therapy of patients with renal injury due to their antiapoptotic capacity.
Brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of post-stroke depression (PSD). However, the precise function and potential mechanism of proBDNF, the precursor form of BDNF, are unknown. In our study, a PSD-like model was established by treating neuronal cells with oxygen-glucose deprivation and corticosterone. We found that the protein proBDNF levels were significantly higher in the cortex and hippocampus in the PSD group than in the control group, suggesting that proBDNF plays a role in the pathophysiology of PSD. Furthermore, we re-established the PSD-like cell model using recombinant p75 neurotrophin receptor (p75NTR) or silencing c-Jun N-terminal kinase (JNK), and found that the PSD-induced upregulation of proBDNF was inhibited by recombinant p75NTR and JNK silencing (siJNK), and increased cellular apoptosis. Moreover, the application of recombinant p75NTR and siJNK in the PSD-like cell model significantly reversed the expression of apoptosis-related and depression-related proteins and decreased cellular apoptosis. Our findings suggest that proBDNF is involved in neural plasticity in PSD in vitro. The RhoA-JNK signaling pathway is activated after proBDNF binds to the p75NTR receptor, followed by the expression of apoptosis-related proteins (PSD95, synaptophysin, and P-cofilin), which contribute to PSD progression. The mechanism might involve the promotion of cellular apoptosis and the inhibition of nerve synapses regeneration by proBDNF.
The modulatory mechanism of flurbiprofen axetil (FPA) by which it relieves cerebral ischemia/reperfusion (I/R) injury (CIRI) is still obscure. In the present work, adult male Sprague-Dawley (SD) rats were pre-treated with FPA before the construction of a rat model of CIRI. Longa's scoring method and dry-wet method were employed to examine the neurological function and brain water content of the rats. MiR-30c-5p, SOX9, AQP4, SOX9, NF-κB, and p-NF-κB expression levels in the brain tissues of the rats were examined by qRT-PCR or Western blot.ELISA was executed to evaluate the IL-10, IL-6, and TNF-α levels in the serum of rat. SOD and MDA levels in rat brain homogenates were also examined to indicate the oxidative stress. Hematoxylin-eosin (HE) staining was used to examine the pathological changes of the brain tissues. Dual-luciferase reporter gene experiment was implemented to validate the binding relationship between miR-30c-5p and SOX9. In the present work, compared with the rats with CIRI, FPA pre-treatment attenuated neurological injury, cerebral edema, oxidative stress, inflammatory response, and cerebral pathological changes in the rat model with CIRI. FPA up-modulated miR-30c-5p expression. SOX9 was a downstream target of miR-30c-5p. In conclusion, FPA ameliorates CIRI through up-modulating miR-30c-5p expression and reducing SOX9 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.