The hepatotoxicity of thioacetamide (TA) has been known since 1948. In rats, single doses cause centrilobular necrosis accompanied by increases in plasma transaminases and bilirubin. To elicit these effects TA requires oxidative bioactivation leading first to its S-oxide (TASO) and then to its chemically reactive S,S-dioxide (TASO2) which ultimately modifies amine-lipids and proteins. To generate a suite of liver proteins adducted by TA metabolites for proteomic analysis, and to reduce the need for both animals and labeled compounds, we treated isolated hepatocytes directly with TA. Surprisingly, TA was not toxic at concentrations up to 50 mM for 40 hr. On the other hand, TASO was highly toxic to isolated hepatocytes as indicated by LDH release, cellular morphology and vital staining with Hoechst 33342/propidium iodide. TASO toxicity was partially blocked by the CYP2E1 inhibitors diallyl sulfide and 4-methylpyrazole, and was strongly inhibited by TA. Significantly, we found that hepatocytes produce TA from TASO relatively efficiently by back-reduction. The covalent binding of [14C]-TASO is inhibited by unlabeled TA which acts as a “cold-trap” for [14C]-TA and prevents its re-oxidation to [14C]-TASO. This in turn increases the net consumption of [14C]-TASO despite the fact that its oxidation to TASO2 is inhibited. The potent inhibition of TASO oxidation by TA, coupled with the back-reduction of TASO and its futile redox cycling with TA may help explain phenomena previously interpreted as “saturation toxicokinetics” in the in vivo metabolism and toxicity of TA and TASO. The improved understanding of the metabolism and covalent binding of TA and TASO facilitates the use of hepatocytes to prepare protein adducts for target protein identification.
Adverse drug events (ADEs) are a common cause of patient morbidity and mortality and are classically thought to result, in part, from variation in expression and activity of hepatic enzymes of drug metabolism. It is now known that alterations in the expression of genes that encode drug- and bile-acid–transporter proteins in both the gut and liver play a previously unrecognized role in determining patient drug response and eventual clinical outcome. Four nuclear receptor (NR) superfamily members, including pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (NR1I3), farnesoid X receptor (NR1H4), and vitamin D receptor (NR1I1), play pivotal roles in drug- and bile-acid– activated programs of gene expression to coordinately regulate drug- and bile-acid transport activity in the intestine and liver. This review focuses on the NR-mediated gene activation of drug and bile-acid transporters in these tissues as well as the possible underlying molecular mechanisms.
Bacterial sepsis is characterized by a rapid increase in the expression of inflammatory mediators to initiate the acute phase response in liver. Inflammatory mediator release is counterbalanced by the coordinated expression of anti-inflammatory molecules such as interleukin 1 receptor antagonist (IL1-Ra) through time. This study determined whether activation of pregnane X receptor (PXR, NR1I2) alters the lipopolysaccharide (LPS)-inducible gene expression program in primary cultures of hepatocytes (PCHs). Preactivation of PXR for 24 hours in PCHs isolated from wild-type mice suppressed the subsequent LPS-inducible expression of the key inflammatory mediators interleukin 1b (IL-1b), interleukin 6 (IL-6), and tumor necrosis factor a (TNFa) but not in PCHs isolated from Pxr-null (PXR-knockout [KO]) mice. Basal expression of key inflammatory cytokines was elevated in PCHs from PXR-KO mice. Stimulation of PCHs from PXR-KO mice with LPS alone produced enhanced levels of IL-1b when compared with wild-type mice. Experiments performed using PCHs from both humanized-PXR transgenic mice as well as human donors indicate that prolonged activation of PXR produces an increased secretion of IL1-Ra from cells through time. Our data reveal a working model that describes a pivotal role for PXR in both inhibiting as well as in resolving the inflammatory response in hepatocytes. Understanding the molecular details of how PXR is converted from a positive regulator of drug-metabolizing enzymes into a transcriptional suppressor of inflammation in liver will provide new pharmacologic strategies for modulating inflammatory-related diseases in the liver and intestine.Pregnane X receptor (PXR, NR1I2) is a ligand-activated nuclear receptor (NR) superfamily member expressed at high levels within the enterohepatic system of mammals. The biologic function of PXR is mediated together with its obligate partner retinoid X receptor a Lehmann et al., 1998). To date, the ligands identified for PXR have been numerous, and they are structurally diverse as naturally occurring steroids , antibiotics (Lehmann et al., 1998), bile acids (Staudinger et al., 2001a;Xie et al., 2001;Goodwin et al., 2003), anticancer agents (Desai et al., 2002;Nallani et al., 2004), and the active ingredients in several herbal remedies (Moore et al., 2000;Brobst et al., 2004;Ding and Staudinger, 2005). Ligand-activated PXR positively regulates the drug-inducible expression of genes encoding key drug transporters and drug metabolizing enzymes that function coordinately to increase the uptake, metabolism, excretion, and efflux of xenobiotics from the body. In this way, PXR activation is associated with increased metabolism and clearance of a myriad of potentially toxic compounds, and is classically thought of as a protective response.Clinical treatment with PXR activators can also lead to the repression or attenuation of other biochemical pathways in liver and intestine including both energy metabolism and the inflammatory response (Moreau et al., 2008). For example, it wa...
Several nuclear receptor (NR) superfamily members are known to be the molecular target of either the small ubiquitin-related modifier (SUMO) or ubiquitin-signaling pathways. However, little is currently known regarding how these two post-translational modifications interact to control NR biology. We show that SUMO and ubiquitin circuitry coordinately modifies the pregnane X receptor (PXR, NR1I2) to play a key role in regulating PXR protein stability, transactivation capacity, and transcriptional repression. The SUMOylation and ubiquitylation of PXR is increased in a ligand-and tumor necrosis factor alpha-dependent manner in hepatocytes. The SUMO-E3 ligase enzymes protein inhibitor of activated signal transducer and activator of transcription-1 (STAT1) STAT-1 (PIAS1) and protein inhibitor of activated STAT Y (PIASy) drive high levels of PXR SUMOylation. Expression of protein inhibitor of activated stat 1 selectively increases SUMO(3)ylation as well as PXR-mediated induction of cytochrome P450, family 3, subfamily A and the xenobiotic response.The PIASy-mediated SUMO(1)ylation imparts a transcriptionally repressive function by ameliorating interaction of PXR with coactivator protein peroxisome proliferator-activated receptor gamma coactivator-1-alpha. The SUMO modification of PXR is effectively antagonized by the SUMO protease sentrin protease (SENP) 2, whereas SENP3 and SENP6 proteases are highly active in the removal of SUMO2/3 chains. The PIASy-mediated SUMO(1)ylation of PXR inhibits ubiquitin-mediated degradation of this important liverenriched NR by the 26S proteasome. Our data reveal a working model that delineates the interactive role that these two post-translational modifications play in reconciling PXR-mediated gene activation of the xenobiotic response versus transcriptional repression of the proinflammatory response in hepatocytes. Taken together, our data reveal that the SUMOylation and ubiquitylation of the PXR interface in a fundamental manner directs its biologic function in the liver in response to xenobiotic or inflammatory stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.