Summary
Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen‐associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP‐triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63‐amino‐acid peptide of VdEG3 was sufficient for cell death‐inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1‐ and VdEG3‐triggered immunity, while SOBIR1 is specifically required for VdEG1‐triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate‐binding module family 1 (CBM1) protein domain suppressed GH12 protein‐induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host‐dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor‐like kinases to trigger immunity in N. benthamiana, and together with CBM1‐containing proteins manipulate plant immunity.
In phylogenetic inference, we commonly use models of substitution which assume that sequence evolution is stationary, reversible, and homogeneous (SRH). Although the use of such models is often criticized, the extent of SRH violations and their effects on phylogenetic inference of tree topologies and edge lengths are not well understood. Here, we introduce and apply the maximal matched-pairs tests of homogeneity to assess the scale and impact of SRH model violations on 3,572 partitions from 35 published phylogenetic data sets. We show that roughly one-quarter of all the partitions we analyzed (23.5%) reject the SRH assumptions, and that for 25% of data sets, tree topologies inferred from all partitions differ significantly from topologies inferred using the subset of partitions that do not reject the SRH assumptions. This proportion increases when comparing trees inferred using the subset of partitions that rejects the SRH assumptions, to those inferred from partitions that do not reject the SRH assumptions. These results suggest that the extent and effects of model violation in phylogenetics may be substantial. They highlight the importance of testing for model violations and possibly excluding partitions that violate models prior to tree reconstruction. Our results also suggest that further effort in developing models that do not require SRH assumptions could lead to large improvements in the accuracy of phylogenomic inference. The scripts necessary to perform the analysis are available in https://github.com/roblanf/SRHtests, and the new tests we describe are available as a new option in IQ-TREE (http://www.iqtree.org).
Summary
Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce).Pathogenicity‐related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed.The Vd991 genome harbored several exclusive, lineage‐specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G‐LSR2) in Vd991 were less virulent only on cotton. Integration of G‐LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G‐LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer.Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.